dc.creatorAntezana, Jorge Abel
dc.creatorBruna, Joaquim
dc.creatorPujals, Enrique
dc.date.accessioned2021-08-27T02:58:53Z
dc.date.accessioned2022-10-14T21:30:57Z
dc.date.available2021-08-27T02:58:53Z
dc.date.available2022-10-14T21:30:57Z
dc.date.created2021-08-27T02:58:53Z
dc.date.issued2020-07-24
dc.identifierAntezana, Jorge Abel; Bruna, Joaquim; Pujals, Enrique; Linear independence of time–frequency translates in Lp spaces; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 26; 63; 24-7-2020; 1-15
dc.identifier1069-5869
dc.identifierhttp://hdl.handle.net/11336/139058
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4308930
dc.description.abstractWe study the Heil-Ramanathan-Topiwala conjecture in L^p spaces by reformulating it as a fixed point problem. This reformulation shows that a function with linearly dependent time-frequency translates has a very rigid structure, which is encoded in a family of linear operators. This is used to give an elementary proof that if f∈ L^p(R) , p∈ [ 1 , 2 ] , and Λ ⊆ R× R is contained in a lattice then the set of time frequency translates (f(a,b))(a,b)∈Λ is linearly independent. Our proof also works for the case 2 < p< ∞ if Λ is contained in a lattice of the form αZ× βZ.
dc.languageeng
dc.publisherBirkhauser Boston Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00041-020-09774-2
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00041-020-09774-2
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectTIME FREQUENCY TRANSLATES
dc.subjectLINEAR INDEPENDENCE
dc.subjectERGODICITY
dc.subjectSYMPLECTIC TRANSFORMATION
dc.subjectLATTICE
dc.subjectLP SPACES
dc.titleLinear independence of time–frequency translates in Lp spaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución