dc.creatorGodoy, Tomás Fernando
dc.creatorKaufmann, Uriel
dc.date.accessioned2022-08-18T14:47:23Z
dc.date.accessioned2022-10-14T18:32:58Z
dc.date.available2022-08-18T14:47:23Z
dc.date.available2022-10-14T18:32:58Z
dc.date.created2022-08-18T14:47:23Z
dc.date.issued2015
dc.identifierhttp://hdl.handle.net/11086/28228
dc.identifierhttps://doi.org/10.48550/arXiv.1411.5875
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4274425
dc.description.abstractLet Ω be a smooth bounded domain in RN , N ≥ 1, let K, M be two nonnegative functions and let α, γ > 0. We study existence and nonexistence of positive solutions for singular problems of the form −Δu = K(x)u−α − λM (x)u−γ in Ω, u = 0 on ∂Ω, where λ > 0 is a real parameter. We mention that as a particular case our results apply to problems of the form −Δu = m(x)u−γ in Ω, u = 0 on ∂Ω, where m is allowed to change sign in Ω.
dc.languageeng
dc.relationhttps://doi.org/10.1016/j.jmaa.2015.03.069
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.sourceISSN: 0022-247X
dc.subjectSingular elliptic problems
dc.subjectIndefinite nonlinearities
dc.subjectPositive solutions
dc.titleOn Dirichlet problems with singular nonlinearity of indefinite sign
dc.typearticle


Este ítem pertenece a la siguiente institución