dc.creator | Godoy, Tomás Fernando | |
dc.creator | Kaufmann, Uriel | |
dc.date.accessioned | 2022-08-18T14:47:23Z | |
dc.date.accessioned | 2022-10-14T18:32:58Z | |
dc.date.available | 2022-08-18T14:47:23Z | |
dc.date.available | 2022-10-14T18:32:58Z | |
dc.date.created | 2022-08-18T14:47:23Z | |
dc.date.issued | 2015 | |
dc.identifier | http://hdl.handle.net/11086/28228 | |
dc.identifier | https://doi.org/10.48550/arXiv.1411.5875 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4274425 | |
dc.description.abstract | Let Ω be a smooth bounded domain in RN , N ≥ 1, let K, M be two nonnegative functions and let α, γ > 0. We study existence and nonexistence of positive solutions for singular problems of the form −Δu = K(x)u−α − λM (x)u−γ in Ω, u = 0 on ∂Ω, where λ > 0 is a real parameter. We mention that as a particular case our results apply to problems of the form −Δu = m(x)u−γ in Ω, u = 0 on ∂Ω, where m is allowed to change sign in Ω. | |
dc.language | eng | |
dc.relation | https://doi.org/10.1016/j.jmaa.2015.03.069 | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.source | ISSN: 0022-247X | |
dc.subject | Singular elliptic problems | |
dc.subject | Indefinite nonlinearities | |
dc.subject | Positive solutions | |
dc.title | On Dirichlet problems with singular nonlinearity of indefinite sign | |
dc.type | article | |