dc.creatorRodríguez Valencia, Edwin Alejandro
dc.date.accessioned2022-01-13T15:09:11Z
dc.date.accessioned2022-10-14T18:32:54Z
dc.date.available2022-01-13T15:09:11Z
dc.date.available2022-10-14T18:32:54Z
dc.date.created2022-01-13T15:09:11Z
dc.date.issued2015
dc.identifierhttp://hdl.handle.net/11086/22155
dc.identifierhttp://dx.doi.org/10.5817/AM2015-1-27
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4274403
dc.description.abstractLet (N, J) be a simply connected 2n-dimensional nilpotent Lie group endowed with an invariant complex structure. We define a left invariant Riemannian metric on N compatible with J to be minimal, if it minimizes the norm of the invariant part of the Ricci tensor among all compatible metrics with the same scalar curvature. In [7], J. Lauret proved that minimal metrics (if any) are unique up to isometry and scaling. This uniqueness allows us to distinguish two complex structures with Riemannian data, giving rise to a great deal of invariants. We show how to use a Riemannian invariant: the eigenvalues of the Ricci operator, polynomial invariants and discrete invariants to give an alternative proof of the pairwise non-isomorphism between the structures which have appeared in the classification of abelian complex structures on 6-dimensional nilpotent Lie algebras given in [1]. We also present some continuous families in dimension 8.
dc.languageeng
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.sourceeISSN 1212-5059
dc.subjectComplex
dc.subjectNilmanifolds
dc.subjectNilpotent Lie groups
dc.subjectMinimal metrics
dc.subjectPfaffian forms
dc.titleInvariants of complex structures on nilmanifolds
dc.typearticle


Este ítem pertenece a la siguiente institución