dc.creator | Godoy, Tomás Fernando | |
dc.creator | Kaufmann, Uriel | |
dc.date.accessioned | 2021-10-01T01:22:04Z | |
dc.date.accessioned | 2022-10-14T18:11:58Z | |
dc.date.available | 2021-10-01T01:22:04Z | |
dc.date.available | 2022-10-14T18:11:58Z | |
dc.date.created | 2021-10-01T01:22:04Z | |
dc.date.issued | 2014 | |
dc.identifier | Godoy, T. & Kaufmann, U. (2014). Existence of Strictly Positive Solutions for Sublinear Elliptic Problems in Bounded Domains. Advanced Nonlinear Studies, 14(2), 353-359. https://doi.org/10.1515/ans-2014-0207 | |
dc.identifier | http://hdl.handle.net/11086/20549 | |
dc.identifier | https://doi.org/10.1515/ans-2014-0207 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4266190 | |
dc.description.abstract | Let Ω be a smooth bounded domain in RN and let m be a possibly discontinuous and
unbounded function that changes sign in Ω. Let f : [0,∞) → [0,∞) be a nondecreasing
continuous function such that k1 ξp ≤ f (ξ) ≤ k2 ξp for all ξ ≥ 0 and some k1 ,k2 > 0 and
p ∈ (0,1). We study existence and nonexistence of strictly positive solutions for nonlinear
elliptic problems of the form −∆u = m (x) f (u) in Ω, u = 0 on ∂Ω. | |
dc.language | eng | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | © 2016 by Advanced Nonlinear Studies, Inc. | |
dc.source | issn: 2169-0375 | |
dc.subject | Elliptic problems | |
dc.subject | Indefinite nonlinearities | |
dc.subject | Sub and supersolutions | |
dc.subject | Positive solutions | |
dc.title | Existence of strictly positive solutions for sublinear elliptic problems in bounded domains | |
dc.type | article | |