dc.creatorBosyk, Gustavo Martín
dc.creatorOsán, Tristán Martín
dc.creatorLamberti, Pedro Walter
dc.creatorPortesi, Mariela
dc.date.accessioned2021-10-18T16:23:24Z
dc.date.accessioned2022-10-14T18:11:58Z
dc.date.available2021-10-18T16:23:24Z
dc.date.available2022-10-14T18:11:58Z
dc.date.created2021-10-18T16:23:24Z
dc.date.issued2014
dc.identifierBosyk, G. M., Osán, T. M., Lamberti, P. W. y Portesi, M. (2014). Geometric formulation of the uncertainty principle. Physical Review A, 89 (3), 034101 https://doi.org/10.1103/PhysRevA.89.034101
dc.identifierhttp://hdl.handle.net/11086/20836
dc.identifierhttps://doi.org/10.1103/PhysRevA.89.034101
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4266186
dc.description.abstractA geometric approach to formulate the uncertainty principle between quantum observables acting on an N-dimensional Hilbert space is proposed. We consider the fidelity between a density operator associated with a quantum system and a projector associated with an observable, and interpret it as the probability of obtaining the outcome corresponding to that projector. We make use of fidelity-based metrics such as angle, Bures, and root infidelity to propose a measure of uncertainty. The triangle inequality allows us to derive a family of uncertainty relations. In the case of the angle metric, we recover the Landau-Pollak inequality for pure states and show, in a natural way, how to extend it to the case of mixed states in arbitrary dimension. In addition, we derive and compare alternative uncertainty relations when using other known fidelity-based metrics.
dc.languageeng
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.sourceISSN 1050-2947
dc.subjectUncertainty principle
dc.subjectLandau-Pollak inequality
dc.subjectFidelity-based metrics
dc.subjectQuantum distances
dc.titleGeometric formulation of the uncertainty principle
dc.typearticle


Este ítem pertenece a la siguiente institución