dc.creatorFemić, Bojana
dc.creatorMejía Castaño, Adriana
dc.creatorMombelli, Juan Martín
dc.date.accessioned2022-08-21T02:39:36Z
dc.date.accessioned2022-10-14T18:11:49Z
dc.date.available2022-08-21T02:39:36Z
dc.date.available2022-10-14T18:11:49Z
dc.date.created2022-08-21T02:39:36Z
dc.date.issued2014-02-12
dc.identifierhttp://hdl.handle.net/11086/28253
dc.identifierhttps://doi.org/10.48550/arXiv.1402.2955
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4266114
dc.description.abstractFor any finite-dimensional Hopf algebra H we construct a group homomorphism BiGal (H) → BrPic(Rep(H)), from the group of equivalence classes of H-biGalois objects to the group of equivalence classes of invertible exact Rep(H)-bimodule categories. We discuss the injectivity of this map. We exemplify in the case H = Tq is a Taft Hopf algebra and for this we classify all exact indecomposable Rep(Tq)- bimodule categories.
dc.languageeng
dc.relationhttps://doi.org/10.1016/j.jpaa.2014.03.007
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.subjectCategorías tensoriales
dc.subjectÁlgebras de Hopf
dc.subjectRepresentaciones de categorías tensoriales
dc.subjectGrupo de Brauer-Picard
dc.subjectMonoidal categories
dc.subjectSymmetric monoidal categories
dc.subjectBrauer-Picard group
dc.subjectTensor category
dc.subjectbiGalois object
dc.titleInvertible bimodule categories over the representation category of a Hopf algebra
dc.typearticle


Este ítem pertenece a la siguiente institución