dc.creatorOlmos, Carlos Enrique
dc.creatorReggiani, Silvio Nicolás
dc.creatorTamaru, Hiroshi
dc.date.accessioned2021-08-17T17:09:28Z
dc.date.accessioned2022-10-14T18:11:45Z
dc.date.available2021-08-17T17:09:28Z
dc.date.available2022-10-14T18:11:45Z
dc.date.created2021-08-17T17:09:28Z
dc.date.issued2014
dc.identifierOlmos, C. E., Reggiani, S. N. y Tamaru, H. (2014). The index of symmetry of compact naturally reductive spaces. Mathematische Zeitschrift, 277 (3-4), 611-628. https://doi.org/10.1007/s00209-013-1268-0
dc.identifierhttp://hdl.handle.net/11086/19594
dc.identifierhttps://doi.org/10.1007/s00209-013-1268-0
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4266092
dc.description.abstractWe introduce a geometric invariant that we call the index of symmetry, which measures how far is a Riemannian manifold from being a symmetric space. We compute, in a geometric way, the index of symmetry of compact naturally reductive spaces. In this case, the so-called leaf of symmetry turns out to be of the group type. We also study several examples where the leaf of symmetry is not of the group type. Interesting examples arise from the unit tangent bundle of the sphere of curvature 2, and two metrics in an Aloff-Wallach 7-manifold and the Wallach 24-manifold.
dc.languageeng
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.sourceISSN 1432-1823
dc.subjectIndex of symmetry
dc.subjectDistribution of symmetry
dc.subjectNaturally reductive space
dc.subjectSymmetric space
dc.titleThe index of symmetry of compact naturally reductive spaces
dc.typearticle


Este ítem pertenece a la siguiente institución