dc.creatorRojano Bolaño, César
dc.creatorÁvila Avilán, Renzo
dc.date3 de agosto de 2020
dc.date25 de noviembre de 2020
dc.date2021-05-12T07:00:00Z
dc.date.accessioned2022-10-13T14:59:56Z
dc.date.available2022-10-13T14:59:56Z
dc.identifierhttps://ciencia.lasalle.edu.co/mv/vol1/iss42/4
dc.identifierhttps://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1402&context=mv
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4177973
dc.descriptionLas carreteras generan impactos negativos sobre la biodiversidad, dentro de los cuales los atropellamientos configuran una de las causas directas más relevantes. El objetivo de este estudio fue establecer la distribución temporal y evaluar los patrones espaciales relacionados con el atropellamiento de vertebrados silvestres en las rutas Yopal-Quebradaseca y Yopal-variante Jagüeyes, en Casanare, Colombia. Entre 2017 y 2018 se realizaron 18 recorridos a 40 km/hora en los que se registraron eventos de atropellamiento. Se determinaron tasas de atropellamiento, puntos calientes, así como variables del paisaje (humedales, vegetación nativa, construcciones) y de la vía (forma y presencia de señales de paso) relacionadas con este tensor. Se registraron 139 eventos de colisión, que incluyeron ocho especies de mamíferos, 13 de reptiles, 20 de aves y una de anfibio. Caiman crocodilus (n = 17), Rhinella marina (n = 13) y Tamandua tetradactyla (n = 13) fueron las especies más atropelladas. Myrmecophaga tridactyla fue la única especie amenazada reportada dentro de este grupo de vertebrados. La mayor tasa de atropellamiento en ambas vías fue encontrada para los reptiles. Para el total de datos, se identificaron 15 puntos calientes de atropellamiento. De forma general, los atropellamientos estuvieron asociados a tramos curvos de la vía, cercanos a humedales cercanos y en zonas sin infraestructura. El 64 % de los individuos atropellados se encontraron una distancia menor a 2 km a una señal de tránsito, lo que indica una baja efectividad de esta medida. Este es el primer reporte de atropellamiento de fauna para la sabana inundable y se espera que sea una herramienta de mitigación de esta amenaza en el departamento
dc.descriptionRoad have impacted negatively the biodiversity and running-over the animals is one of the most relevant direct causes. This study aims to determine the time distribution and evaluate the spatial patterns related to running-over of wild vertebrates in the roads Yopal-Quebradaseca and Yopal-variante Jagüeyes, in Casanare (Colombia). between 2017 and 2018, running-over events were recorded in 18 trips at 40 km/h. Running-over rates and hotspots were determined as well as some landscape variables (wetlands, native vegetation, buildings) and road variables (shape and use of traffic signs) related to this issue. This way, 139 collision events were recorded including 8 mammal species, 13 reptiles, 20 birds and one amphibian. Caiman crocodilus (n = 17), Rhinella marina (n = 13) and Tamandua tetradactyla (n = 13) were the most run-over species. Myrmecophaga tridactyla was the only threatened species reported in this vertebrate group. Reptiles were the animals with higher running-over rates in both road directions. Based on the total data, 15 hotspots were identified. In general, running-over events were associated with going through curve sections, getting close to a wetland, and driving in areas without any infrastructure. In these events, 64% of the run-over animals were found at a distance lower than 2 km from traffic sign, which indicates a poor effectiveness of these signs. This is the first report of animal running-over in this flooded savanna and is expected to be used as a tool to mitigate the impact on this province.
dc.formatapplication/pdf
dc.format27 - 40
dc.languagespa
dc.publisherUniversidad de La Salle. Ediciones Unisalle
dc.relationArroyave MDP, Gómez C, Gutiérrez ME, Múnera DP, Zapata PA, Vergara IC, Ramos KC. Impactos de las carreteras sobre la fauna silvestre y sus principales medidas de manejo. Rev EIA, 2006;(5):45-57
dc.relationClevenger A, Huijser M. Wildlife crossing structure handbook. Design and evaluation in North America. Bozeman, USA: Western Transportation Institute; 2011
dc.relationPinto FA, Bager A, Clevenger AP, Grilo C. Giant anteater (Myrmecophaga tridactyla) conservation in Brazil: Analyzing the relative effects of fragmentation and mortality due to roads. Biol Conserv. 2018;(228):148-157. https://doi.org/10.1016/j.biocon.2018.10.023
dc.relationFahrig, L, Rytwinski, T. Effects of roads on animal abundance: an empirical review and synthesis. Ecol. and Soc. 2009;(14):21. https://doi.org/10.5751/ES-02815-140121
dc.relationForman, RT, Alexander, LE. Roads and their major ecological effects. Annu. Rev. Ecol. Evol. Syst. 1998;(29): 207-231. https://doi.org/10.1146/annurev.ecolsys.29.1.207
dc.relationKang W, Minor ES, Woo D, Lee D, Park CR. Forest mammal roadkills as related to habitat connectivity in protected areas. Biodivers Conserv. 2016;(25): 2673-2686. https://doi.org/10.1007/s10531-016-1194-7
dc.relationClevenger AP, Chruszcz B, Gunson KE. Spatial patterns and factors influencing small vertebrate fauna road-kill aggregations. Biol Conserv. 2003;(103):15-26. https://doi.org/10.1016/S0006-3207(02)00127-1
dc.relationGarriga N, Franch M, Santos X, Montori A, Llorente GA. Seasonal variation in vertebrate traffic casualties and its implications for mitigation measures. Landscape Urban Plann. 2017;(157):36-44. https://doi.org/10.1016/j.landurbplan.2016.05.029
dc.relationGrilo C, Bissonette JA, Cramer PC. Mitigation measures to reduce impacts on biodiversity. En: Highways: construction, management, and maintenance. Hauppauge (NY): Nova Science Publishers; 2010. p. 73-114
dc.relationPolak T, Rhodes JR, Jones D, Possingham HP. Optimal planning for mitigating the impacts of roads on wildlife. J Appl Ecol. 2014;(51):726-734. https://doi.org/10.1111/1365-2664.12243
dc.relationMorelle К, Lehaire F, Lejeune P. Spatio-temporal patterns of wildlife-vehicle collisions in a region with a high-density road network. Nat Conserv. 2013;(5):53-73. https://doi.org/10.3897/natureconservation.5.4634
dc.relationDe La Ossa-V J, Galván-Guevara S. Registro de mortalidad de fauna silvestre por colisión vehicular en la carretera Toluviejo – ciénaga La Caimanera, Sucre, Colombia. Biota Colomb. 2015;(16):66-77
dc.relationCaballero MA, Moreno LC. Mortalidad de vertebrados silvestres en dos segmentos de la carretera troncal del Caribe, Magdalena, Colombia. Biota Colomb. 2019;(20):106-119. https://doi.org/10.21068/c2019.v20n01a07
dc.relationRojano C, Chacón-Pacheco J, Polo, AF. El oso melero (Tamandua mexicana), en el Caribe colombiano: aportes sobre su ecología y amenazas. Edentata. 2016; (17):17-24. https://doi.org/10.2305/IUCN.CH.2016.Edentata-17-1.4.en
dc.relationVélez AD. Adiciones al atropellamiento vehicular de mamíferos en la vía de El Escobero, Envigado (Antioquia), Colombia. Rev EIA. 2014;(22):147-153
dc.relationVargas-Salinas F, López-Aranda F. ¿Las carreteras pueden restringir el movimiento de pequeños mamíferos en bosques andinos de Colombia? Estudio de caso en el bosque de Yotoco, Valle del Cauca. Caldasia. 2012;(34):409-420
dc.relationMeza-Joya F, Ramos E, Cardona D. Spatio-temporal patterns of mammal road mortality in middle Magdalena valley, Colombia. Oecol Aust. 2019;(23):575-588. https://doi.org/10.4257/oeco.2019.2303.15
dc.relationRincón-Aranguri M, Urbina-Cardona N, Galeano SP, Páez, VP. Roadkill of snakes on a highway in an Orinoco Ecosystem: Landscape factors and species traits related to their mortality. Trop Conserv Sci. 2019;(12):1-18. https://doi.org/10.1177/1940082919830832
dc.relationLasso CA, Usma JS, Trujillo F, Rial A. Biodiversidad de la cuenca del Orinoco: bases científicas para la identificación de áreas prioritarias para la conservación y uso sostenible de la biodiversidad. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, WWF Colombia, Fundación Omacha, Fundación La Salle e Universidad Nacional de Colombia; 2010
dc.relationPodestá-Castro P. Transformación productiva de las sabanas de la altillanura colombiana [tesis pregrado]. Buenos Aires: Universidad Católica Argentina; 2016
dc.relationAndrade GI, Castro-Gutiérrez L, Rodríguez-Becerra M, Uribe-Botero E, Wills-Herrera E. La mejor Orinoquía que podemos construir. Elementos para la sostenibilidad ambiental del desarrollo. Bogotá: Universidad Andes y Corporinoquia; 2011
dc.relationRincón-Aranguri M, Pachón-García J, Eslava-Mocha P, Astwood-Romero J. Diagnóstico de atropellamiento vial de fauna silvestre e identificación de puntos críticos en tres rutas principales del departamento del Meta, Informe final. Cormacarena y Unillanos [internet]. 2015. Disponible en: http://www.cormacarena.gov.co/descargarpdf.php?libro=9380
dc.relationAstwood-Romero J, Reyes C, Rincón-Aranguri M, Pachón-García J, Eslava-Mocha P, Parra C. Mortalidad de reptiles en carreteras del piedemonte de los llanos orientales colombianos. Caldasia. 2017;(40):321-334. https://doi.org/10.15446/caldasia.v40n2.67578
dc.relationOsorio-Peláez C, Lasso CA, Trujillo F. XIII. Aplicación de criterios bioecológicos para la identificación, caracterización y establecimiento de límites funcionales en humedales de las sabanas inundables de la Orinoquia. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH); 2015
dc.relationInstituto de Hidrología, Meteorología y Estudios Ambientales. Promedios de precipitación y temperatura [internet]. 2017. Disponible en: https://www.datos.gov.co/d/nsxu-h2dh?category=Ambiente-y-Desarrollo-Sostenible&view_name=Promedios-Precipitaci-n-yTemperatura-media-Promed
dc.relationInstituto de Hidrología, Meteorología y Estudios Ambientales. 2010. Mapa de cobertura de la tierra, período 2010-2012 [internet]. 2017. Disponible en: http://www.siac.gov.co/fi/catalogo-de-mapas
dc.relationRueda-Almonacid JV, Carr JL, Mittermeier RA, Rodriguez-Maecha JV, Mast RB, Vogt RC, Rhodin AGJ, De La Ossa-Velásquez J, Rueda JN, Goettsch-M C. Las tortugas y los cocodrilianos de los países andinos del trópico. Serie de guías tropicales de campo N.° 6. Bogotá, Colombia: Conservación Internacional, Andes CBC; 2007
dc.relationCanevari M, Vaccaro O. Guía de mamíferos del sur de América del Sur. 1.a ed. Buenos Aires: L.O.L.A.; 2007
dc.relationMcNish T. Las aves de los Llanos de la Orinoquía. Bogotá: M&B; 2007
dc.relationSantos SM, Carvalho F, Mira A. How long do the dead survive on the road? Carcass persistence probability and implications for road-kill monitoring surveys. PLoS ONE. 2011;(6):1-12. https://doi.org/10.1371/journal.pone.0025383
dc.relationTeixeira FZ, Coelho AVP, Esperandio IB, Kindel A. Vertebrate road mortality estimates: Effects of sampling methods and carcass removal. Biol. Conserv. 2013;(157):317-323. https://doi.org/10.1016/j.biocon.2012.09.006
dc.relationCoelho AVP, Coelho IP, Kindel A, Teixeira FZ. Siriema: road mortality software. User’s Manual V. 2.0. Porto Alegre: NERF, UFRGS; 2014
dc.relationTeixeira FZ, Coelho IP, Esperandio IB, Oliveira NR, Porto-Peter F, Dornelles SS, Delazeri NR, Tavares M, Borges-Martins M, Kindel A. Are road-kill hotspots coincident among different vertebrate groups? Oecol Aus. 2013;(17):36-47. https://doi.org/10.4257/oeco.2013.1701.04
dc.relationCoelho IP, Kindel A, Coelho AVP. Roadkills of vertebrate species on two highways through the Atlantic Forest Biosphere Reserve, southern Brazil. Eur J Wildl Res. 2008;(54):689-699. https://doi.org/10.1007/s10344-008-0197-4
dc.relationHosmer DW, Lemeshow S. Applied Logistic Regression. 2.a ed. New York: Wiley-Interscience; 2000. https://doi.org/10.1002/0471722146
dc.relationR Core Team. R: A language and environment for statistical computing [Internet]. 2017. Disponible en: https://qgis.org/en/site/about/index.html
dc.relationRamos E, Meza-Joya FL. Reptile road mortality in a fragmented landscape of the Middle Magdalena Valley, Colombia. Herpetol Notes. 2018;(11):81–9.
dc.relationAdárraga-Caballero MA, Gutiérrez-Moreno LC. Mortalidad de vertebrados silvestres en la carretera Troncal del Caribe, Magdalena, Colombia. Biota Colomb. 2019;(20):106-119. https://doi.org/10.21068/c2019.v20n01a07
dc.relationLópez DF, León-Yusti M, Guevara-Molina SC, Vargas-Salinas F. Reptiles en corredores biológicos y mortalidad por atropellamiento vehicular en Barbas-Bremen, departamento del Quindío, Colombia. Rev Acad Colomb Cienc Exactas Fis Nat. 2016;(40):484-493. https://doi.org/10.18257/raccefyn.334
dc.relationDe La Ossa-V J, Galván-Guevara S. Registro de mortalidad de fauna silvestre por colisión vehicular en la carretera Toluviejo-ciénaga La Caimanera, Sucre, Colombia. Biota Colomb. 2015;(16):67-77
dc.relationAshley P, Robinson JT. Road mortality of amphibians, reptiles and other wildlife on the Long Point Causeway, Lake Erie, Ontario. Can Field-Nat. 1996;(110):403-412
dc.relationShine R, Lemaster M, Wall M, Langkilde T, Mason R. Why did the snake cross the road? Effects of roads on movement and location of mates by garter snakes (Thamnophis sirtalis parietalis). Ecol Soc. 2004;(9):1-9. https://doi.org/10.5751/ES-00624-090109
dc.relationAndrews K, Whitfield J. How do highways influence snake movement? Behavioral responses to roads and vehicles. Copeia. 2005;(4):772-782. https://doi.org/10.1643/0045-8511(2005)005[0772:HDHISM]2.0.CO;2
dc.relationMinisterio de Ambiente y desarrollo sostenible. Resolución 1912 de 2017 [internet]. 2017. Disponible en: https://www.minambiente.gov.co/images/normativa/app/resoluciones/75res%201912%20de%202017.pdf
dc.relationUnión Internacional para la Conservación de la Naturaleza – UICN. [internet]. 2019 [citado 2019 mar 16]. Disponible en: https://www.iucn.org/es
dc.relationFahrig L, Rytwinski T. Effects of roads on animal abundance: an empirical review and synthesis. Ecol Soc. 2009;(14):21. https://doi.org/10.5751/ES-02815-140121
dc.relationMiranda F, Bertassoni A, Abba AM. Myrmecophaga tridactyla. En: The IUCN Red List of Threatened Species. Version 2014.1 [internet]. 2014 [citado 2019 jul 20]. Disponible en: https://www.iucnredlist.org/fr/species/14224/47441961
dc.relationBallejo F, De Santis L. Dieta estacional del jote cabeza negra (Coragyps atratus) en un área rural y una urbana en el noroeste patagónico. Hornero. 2013;(28):7-14
dc.relationCanal D, Camacho C, Martín B, de Lucas M, Ferrer M. Fine-scale determinants of vertebrate roadkills across a biodiversity hotspot in Southern Spain. Biodivers Conserv. 2019;(28):3239-3256 https://doi.org/10.1007/s10531-019-01817-5
dc.relationGunson KE, Mountrakis G, Quackenbush LJ. Spatial wildlife-vehicle collision models: a review of current work and its application to transportation mitigation projects. J Environ Manag. 2011;(92):1074-1082. https://doi.org/10.1016/j.jenvman.2010.11.027
dc.relationSpear SF, Balkenhol N, Fortín MJ, McRae BH, Scribner K. Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol. 2010;(19):3576-3591. https://doi.org/10.1111/j.1365-294X.2010.04657.x
dc.relationTrainor AM, Walters JR, Morris WF, Sexton J, Moody A. Empirical estimation of dispersal resistance surfaces: a case study with red-cockaded woodpeckers. Landsc Ecol. 2013;(28):755-767. https://doi.org/10.1007/s10980-013-9861-5
dc.relationFreitas SR, Nepomuceno de Oliveira A, Ciocheti G, Vieira MV, Maria D, Matos S. How landscape features influence roadkill of three species of mammals in the Brazilian savanna? Oecol Aus. 2015;(18):35-45. https://doi.org/10.4257/oeco.2014.1801.02
dc.relationBueno C, Sousa C, de Freitas SR. Habitat or matrix: which is more relevant to predict roadkill of vertebrates? Braz J Biol, 2015;(75): S228-S238. https://doi.org/10.1590/1519-6984.12614
dc.relationDe La Ossa V J, De La Ossa-Lacayo A. Ocupación de jagüeyes por la babilla, Caiman crocodilus fuscus (Cope, 1868), en el Caribe colombiano. Biota Colomb. 2013;(14):326-334
dc.relationCastillo-R JC, Urmendez-M D, Zambrano-G G. Mortalidad de fauna por atropello vehicular en un sector de la vía panamericana entre Popayán y Patía. Bol. Cient Mus Hist Nat. 2015;(19):207-219
dc.relationPuc-Sánchez JI, Delgado-Trejo C, Mendoza-Ramírez E, Suazo-Ortuño I. Las carreteras como una fuente de mortalidad de fauna silvestre en México. CONABIO Biodiversitas. 2013;(11):12-16
dc.relationMeyer E. Assessing the effectiveness of deer warning signs (N.° K-TRAN: KU-03-6). Kansas, USA: Kansas Department of Transportation; 2006
dc.relationHuijser MP, McGowen PT. Reducing wildlife-vehicle collisions. En: Safe passage: Highways, wildlife, and habitat connectivity. Washington DC: Island Press; 2010
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcceso abierto
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectOrinoquía
dc.subjectbiodiversidad
dc.subjectecología de carreteras
dc.subjectaves
dc.subjectmamíferos
dc.subjectreptiles
dc.subjectanfibios
dc.subjectOrinoco Region, biodiversity, road ecology, birds, mammals, reptiles, amphibians
dc.subjectAgriculture
dc.subjectAnimal Sciences
dc.subjectLife Sciences
dc.subjectVeterinary Medicine
dc.titleMortalidad de vertebrados silvestres por atropellamiento en el departamento de Casanare, Colombia
dc.typeArtículo de investigación
dc.identifier.doihttps://doi.org/10.19052/mv.vol1.iss42.4
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.contentText
dc.type.coarversionVersión publicada
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.relation.citationstartpage27
dc.relation.citationendpage40
dc.identifier.instnameinstname:Universidad de La Salle
dc.identifier.reponamereponame:Ciencia Unisalle
dc.identifier.repo.urlrepourl:https://ciencia.lasalle.edu.co/
dc.relation.ispartofcitationissue42
dc.relation.ispartofjournalRevista de Medicina Veterinaria
dc.title.translatedMortality in Wild Vertebrates due to Running-over in Casanare Province, Colombia


Este ítem pertenece a la siguiente institución