dc.creatorGómez-Villaraga, Fernando
dc.date2020-03-02T08:00:00Z
dc.date.accessioned2022-10-13T13:36:32Z
dc.date.available2022-10-13T13:36:32Z
dc.identifierhttps://ciencia.lasalle.edu.co/scopus_unisalle/82
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4157764
dc.descriptionThis paper presents a simple extension of Rolle's Theorem. This extension allows determining the amount of numbers ξ in which f'(ξ ) = 0 in a given interval, using the characteristics of the function f in that interval. The extension has been proved, and the geometric interpretation has been presented. Illustrative examples have also been developed for each case that can be obtained by applying the extension. Finally, the study examines the relation of this theorem with the problem of multiple internal rates of return (IRR). i i
dc.sourceRevista Finanzas y Politica Economica
dc.source241
dc.subjectMultiple internal rates of return (IRR)
dc.subjectRolle's theorem
dc.titleA simple extension of Rolle's theorem and its relation with multiple internal rates of return (IRR)
dc.typeArticle


Este ítem pertenece a la siguiente institución