dc.creator | GUILLERMO DE ITA LUNA | |
dc.creator | JOSE RAYMUNDO MARCIAL ROMERO | |
dc.creator | JOSE ANTONIO HERNANDEZ SERVIN | |
dc.date | 2017-01-01 | |
dc.date.accessioned | 2022-10-12T19:54:06Z | |
dc.date.available | 2022-10-12T19:54:06Z | |
dc.identifier | http://hdl.handle.net/20.500.11799/67665 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4124442 | |
dc.description | A procedure for counting edge covers of simple graphs is presented. The procedure splits simple graphs into non-intersecting cycle graphs. This is a “low exponential” exact algorithm to count edge covers for simple graphs whose upper bound in the worst case is O(1.465575(m−n) × (m + n)), where m and n are the number of edges and nodes of the input graph, respectively. | |
dc.language | eng | |
dc.publisher | Computación y Sistemas | |
dc.relation | 21;3 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0 | |
dc.source | 2007-9737 | |
dc.subject | edge covering | |
dc.subject | graph theory | |
dc.subject | integer partition | |
dc.subject | info:eu-repo/classification/cti/7 | |
dc.title | Low-Exponential Algorithm for Counting the Number of Edge Cover on Simple Graphs | |
dc.type | info:eu-repo/semantics/article | |
dc.audience | students | |
dc.audience | researchers | |