dc.creatorGUILLERMO DE ITA LUNA
dc.creatorJOSE RAYMUNDO MARCIAL ROMERO
dc.creatorJOSE ANTONIO HERNANDEZ SERVIN
dc.date2017-01-01
dc.date.accessioned2022-10-12T19:54:06Z
dc.date.available2022-10-12T19:54:06Z
dc.identifierhttp://hdl.handle.net/20.500.11799/67665
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4124442
dc.descriptionA procedure for counting edge covers of simple graphs is presented. The procedure splits simple graphs into non-intersecting cycle graphs. This is a “low exponential” exact algorithm to count edge covers for simple graphs whose upper bound in the worst case is O(1.465575(m−n) × (m + n)), where m and n are the number of edges and nodes of the input graph, respectively.
dc.languageeng
dc.publisherComputación y Sistemas
dc.relation21;3
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.source2007-9737
dc.subjectedge covering
dc.subjectgraph theory
dc.subjectinteger partition
dc.subjectinfo:eu-repo/classification/cti/7
dc.titleLow-Exponential Algorithm for Counting the Number of Edge Cover on Simple Graphs
dc.typeinfo:eu-repo/semantics/article
dc.audiencestudents
dc.audienceresearchers


Este ítem pertenece a la siguiente institución