dc.creator | Cotes, Alba Marina | |
dc.creator | Mosher, Stephen | |
dc.creator | Barrera, Gloria Patricia | |
dc.creator | Kobayashi, Sadao | |
dc.creator | Elad, Yigal | |
dc.date.accessioned | 2018-12-05T15:24:00Z | |
dc.date.accessioned | 2022-10-12T19:24:18Z | |
dc.date.available | 2018-12-05T15:24:00Z | |
dc.date.available | 2022-10-12T19:24:18Z | |
dc.date.created | 2018-12-05T15:24:00Z | |
dc.date.issued | 2018 | |
dc.identifier | 978-958-740-254-4 (e-book) | |
dc.identifier | http://hdl.handle.net/20.500.12324/34158 | |
dc.identifier | reponame:Biblioteca Digital Agropecuaria de Colombia | |
dc.identifier | repourl:https://repository.agrosavia.co | |
dc.identifier | instname:Corporación colombiana de investigación agropecuaria AGROSAVIA | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4118100 | |
dc.description.abstract | Las tecnologías biológicas, incluyendo el uso de microorganismos biocontroladores, están adquiriendo una importancia primordial en la producción agrícola. Sin embargo, la mayoría de los enfoques para el control biológico de enfermedades de las plantas ha tenido un alcance limitado. Un ejemplo de esto lo representa el hecho de que, en las últimas décadas, en general, se han utilizado agentes de biocontrol individuales para controlar un solo patógeno. Esto puede explicar parcialmente la respuesta inconsistente que se observa frecuentemente, ya que dichos agentes individuales pueden ser inactivos en varios de los ambientes en los que se aplican o contra diferentes patógenos que atacan a la planta huésped. Lograr un control de amplio espectro de patógenos por los antagonistas que se apliquen individualmente o en consorcio sigue siendo, en gran medida, un objetivo no cumplido para la explotación eficaz del control biológico, así como ampliar los usos de los agentes de control biológico para lograr efectos complementarios, tales como tolerancia a factores abióticos limitantes como la sequía y la salinidad, biofertilización y biorremediación, entre otros. Además, en general, se han usado los mismos microorganismos biocontroladores y los descubrimientos de nuevos agentes de control biológico son muy limitados. Sin embargo, estas investigaciones requieren de métodos de tamizado o screening de alta eficiencia que permitan evaluar de forma rápida muchos microorganismos. De otra parte, existen múltiples patógenos para los cuales no se han desarrollado alternativas de control biológico efectivas, como es el caso de muchas bacterias fitopatógenas y de virus, donde existe un potencial inexplorado. Así mismo, el desarrollo de nuevos componentes de manejo que puedan integrarse a los agentes de control biológico para mejorar la respuesta de control tiene aún mucho espacio de investigación. | |
dc.language | spa | |
dc.publisher | Corporación colombiana de investigación agropecuaria - AGROSAVIA | |
dc.publisher | Bogotá (Colombia) | |
dc.relation | 33519 ; Control biológico de fitopatógenos, insectos y ácaros: Aplicaciones y perspectivas V. 2. | |
dc.relation | 878 | |
dc.relation | 921 | |
dc.relation | Abdelfattah, A., Wisniewski, M., Droby, S., & Schena, L.
(2016). Spatial and compositional variation in the fungal
communities of organic and conventionally grown apple
fruit at the consumer point-of-purchase. Horticulture
Research, 3, 16047. doi:10.1038/hortres.2016.47. | |
dc.relation | Abo-Amer, A. (2011). Biodegradation of diazinon by
Serratia marcescens DI101 and its use in bioremediation
of contaminated environment. Journal of Microbiology and
Biotechnology, 21(1), 71-80. | |
dc.relation | Adams, P., De-Leij, F. A. A. M., & Lynch, J. M. (2007).
Trichoderma harzianum rifai 1295-22 mediates growth
promotion of crack willow (Salix fragilis) saplings in both
clean and metal-contaminated soil. Microbial Ecology,
54(2), 306-313. | |
dc.relation | Agler, M. T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.-
T., Weigel, D., & Kemen, E. M. (2016). Microbial hub
taxa link host and abiotic factors to plant microbiome
variation. Plos Biology, 14(1): e1002352. doi:10.1371/
journal.pbio.1002352. | |
dc.relation | Aino, M., Iwamoto, Y., Hashimoto, Y., & Ishikawa, K. (2007).
Effect of the endophytic bacteria in lettuce (Lactuca sativa)
roots suppressing infection of Olpidium virulentus viral
vector for lettuce big-vein virus and possibility of the control
of lettuce big-vein diseases by the endophytic bacteria. Kasai,
Japón: Technology Center for Agriculture, Forestry and
Fisheries | |
dc.relation | Alabouvette, C., & Cordier, C. (2011). Risks of microbial
biocontrol agents and regulation: are they in balance? En
R. U. Ehlers (Eds.). Regulation of biological control agents
(pp. 157-173). Dordrecht, Holanda: Springer. | |
dc.relation | Algam, S. A., Xie, G., Li, B., Yu, S., Su, T., & Larsen, J.
(2010). Effects of Paenibacillus strains and chitosan on
plant growth promotion and control of Ralstonia wilt in
tomato. Journal of Plant Pathology, 92(3), 593-600. | |
dc.relation | Altomare, C., Norvell, W. A., Björkman, T., & Harman, G. E.
(1999). Solubilization of phosphates and micronutrients
by the plant-growth-promoting and biocontrol fungus
Trichoderma harzianum rifai 1295-22. Applied and
Environmental Microbiology, 65(7), 2926-2933. | |
dc.relation | Andreoni, V., Colombo, M., Colombo, A., Vecchio, A., &
Finoli, C. (2003). Cadmium and zinc removal by growing
cells of Pseudomonas putida strain B14 isolated from
a metal-impacted soil. Annals of Microbiology, 53(2),
135-148. | |
dc.relation | Arshad, M., & Frankenberger Jr., W. T. (1993). Microbial
production of plant growth regulators. En F. B. Metting Jr.
(Ed.), Soil microbial ecology: applications in agricultural and
environmental management (pp. 307-347). Nueva York,
EE. UU.: Marcell Dekker Inc. | |
dc.relation | Badawy, M. E. I., & Rabea, E. I. (2011). A biopolymer
chitosan and its derivatives as promising antimicrobial
agents against plant pathogens and their applications
in crop protection. International Journal of Carbohydrate
Chemistry, 2011, 1-29. doi:10.1155/2011/460381. | |
dc.relation | Badri, D. V., & Vivanco, J. M. (2009). Regulation and function
of root exudates. Plant, Cell & Environment, 32(6), 666-
681. doi:10.1111/j.1365-3040.2008.01926.x. | |
dc.relation | Baider, A., & Cohen, Y. (2003). Synergistic interaction
between baba and mancozeb in controlling Phytophthora
infestans in potato and tomato and Pseudoperonospora
cubensis in cucumber. Phytoparasitica, 31(4), 399-409.
doi:10.1007/BF02979812 | |
dc.relation | Barber, M. S., Bertram, R. E., & Ride, J. P. (1989). Chitin
oligosaccharides elicit lignification in wounded wheat
leaves. Physiological and Molecular Plant Pathology, 34(1),
3-12. doi:10.1016/0885-5765(89)90012-X. | |
dc.relation | Behlau, F., Canteros, B. I., Minsavage, G. V., Jones, J. B., &
Graham, J. H. (2011). Molecular characterization of
copper resistance genes from Xanthomonas citri subsp.
citri and Xanthomonas alfalfae subsp. citrumelonis. Applied
and Environmental Microbiology, 77(12), 4089-4096.
doi:10.1128/AEM.03043-10. | |
dc.relation | Bender, C. L., & Cooksey, D. A. (1986). Indigenous plasmids
in Pseudomonas syringae pv. tomato: conjugative transfer
and role in copper resistance. Journal of Bacteriology,
165(2), 534-541. | |
dc.relation | eneduzi, A., Ambrosini, A., & Passaglia, L. M. (2012).
Plant growth-promoting rhizobacteria (pgpr): their potential as antagonists and biocontrol agents. Genetics
and Molecular Biology, 35(4), 1044-1051. | |
dc.relation | Benhamou, N., Kloepper, J. W., & Tuzun, S. (1998).
Induction of resistance against Fusarium wilt of tomato
by combination of chitosan with an endophytic bacterial
strain: ultrastructure and cytochemistry of the host
response. Planta, 204(2), 153-168. doi:10.1007/
s004250050242. | |
dc.relation | Berg, G., Eberl, L., & Hartmann, A. (2005). The rhizosphere
as a reservoir for opportunistic human pathogenic
bacteria. Environmental Microbiology, 7(11), 1673-1685.
doi:10.1111/j.1462-2920.2005.00891.x. | |
dc.relation | Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014).
Unraveling the plant microbiome: looking back and
future perspectives. Frontiers in Microbiology, 5, 148.
doi:10.3389/fmicb.2014.00148. | |
dc.relation | Berg, G., Rybakova, D., Grube, M., & Koberl, M. (2016). The
plant microbiome explored: implications for experimental
botany. Journal of Experimental Botany, 67(4), 995-1002.
doi:10.1093/jxb/erv466. | |
dc.relation | Bhattacharyya, P., & Jha, D. (2012). Plant growth-promoting
rhizobacteria (pgpr): emergence in agriculture. World
Journal of Microbiology and Biotechnology, 28(4), 1327-
1350. doi:10.1007/s11274-011-0979-9. | |
dc.relation | Bosmans, L., De Bruijn, I., Gerards, S., Moerkens, R., Van
Looveren, L., Wittemans, … Lievens, B. (2017). Potential
for biocontrol of hairy root disease by a Paenibacillus
clade. Frontiers in Microbiology 8, 1-11. doi:10.3389/
fmicb.2017.00447. | |
dc.relation | Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van
Themaat, E., Ahmadinejad, N., Assenza, F., ... SchulzeLefert, P. (2012). Revealing structure and assembly cues
for Arabidopsis root-inhabiting bacterial microbiota.
Nature, 488(7409), 91-95. doi:10.1038/nature11336. | |
dc.relation | Cai, F., Yu, G., Wang, P., Wei, Z., Fu, L., Shen, Q., Chen,
W. (2013). Harzianolide, a novel plant growth regulator
and systemic resistance elicitor from Trichoderma
harzianum. Plant Physiology and Biochemistry, 73, 106-
113. doi:10.1016/j.plaphy.2013.08.011. | |
dc.relation | Calvo, P., Nelson, L., & Kloepper, J.W. (2014). Agricultural
uses of plant biostimulants. Plant Soil, 383(1-2), 3-41.
doi:10.1007/s11104-014-2131-8 | |
dc.relation | Campbell, R. (1991). Biological control of microbial plant
pathogens. Nueva York, EE. UU.: Cambridge University
Press. | |
dc.relation | Castillo, D., & Sword, G. A. (2015). The endophytic fungal
entomopathogens Beauveria bassiana and Purpureocillium
lilacinum enhance the growth of cultivated cotton
(Gossypium hirsutum) and negatively affect survival of
the cotton bollworm (Helicoverpa zea). Biological Control,
89, 53-60. | |
dc.relation | Chakroun, H., Mechichi, T., Martinez, M. J., Dhouib, A., &
Sayadi, S. (2010). Purification and characterization of a
novel laccase from the ascomycete Trichoderma atroviride:
application on bioremediation of phenolic compounds.
Process Biochemistry, 45(4), 507-513. doi:10.1016/j.
procbio.2009.11.009. | |
dc.relation | Chen, F., Gao, Y., Chen, X., Yu, Z., & Li, X. (2013). Quorum
quenching enzymes and their application in degrading
signal molecules to block Quorum sensing-dependent
infection. International Journal of Molecular Sciences,
14(9), 17477-17500. doi:10.3390/ijms140917477. | |
dc.relation | Chen, S.-K., Edwards, C. A., & Subler, S. (2001). Effects
of the fungicides benomyl, captan and chlorothalonil
on soil microbial activity and nitrogen dynamics in
laboratory incubations. Soil Biology & Biochemistry,
33(14), 1971-1980. | |
dc.relation | Chen, T. H., & Murata, N. (2011). Glycinebetaine
protects plants against abiotic stress: mechanisms and
biotechnological applications. Plant, Cell & Environment,
34(1), 1-20. doi:10.1111/j.1365-3040.2010.02232.x. | |
dc.relation | Chowdhury, S. P., Uhl, J., Grosch, R., Alquéres, S., Pittroff, S.,
Dietel, K., … Hartmann, A. (2015). Cyclic lipopeptides
of Bacillus amyloliquefaciens subsp. plantarum colonizing
the lettuce rhizosphere enhance plant defense responses
toward the bottom rot pathogen Rhizoctonia solani.
Molecular Plant-Microbe Interactions, 28(9), 984-995.
doi:10.1094/MPMI-03-15-0066-R. | |
dc.relation | Civerolo, E., & Keil, H. (1969). Inhibition of bacterial spot
of peach foliage by Xanthomonas pruni bacteriophage.
Phytopathology, 59, 1966-1967. | |
dc.relation | Cohen, E. (2001). Chitin synthesis and inhibition: a revisit.
Pest Management Science, 57(10), 946-950. doi:10.1002/
ps.363. | |
dc.relation | Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., &
Cardarelli, M. (2014). Biostimulant action of a plantderived protein hydrolysate produced through enzymatic
hydrolysis. Frontiers in Plant Science, 5, 448. doi:10.3389/
fpls.2014.00448. | |
dc.relation | Conrath, U., Domard, A., & Kauss, H. (1989). Chitosanelicited synthesis of callose and of coumarin derivatives in
parsley cell suspension cultures. Plant Cell Reports, 8(3),
152-155. doi:10.1007/BF00716829. | |
dc.relation | Cooksey, D. A. (1990). Genetics of bactericide resistance
in plant pathogenic bacteria. Annual Review of
Phytopathology, 28, 201-219. doi:10.1146/annurev.
py.28.090190.001221. | |
dc.relation | Cooksey, D. A. (1994). Molecular mechanisms of copper
resistance and accumulation in bacteria. FEMS
Microbiology Reviews, 14(4), 381-386. | |
dc.relation | Coons, G. H., & Kotila, J. E. (1925). The transmissible lytic
principle (bacteriophage) in relation to plant pathogens.
Phytopathology, 15, 357-370. | |
dc.relation | Köhle, H., Jeblick, W., Poten, F., Blaschek, W., & Kauss, H.
(1985). Chitosan-Elicited Callose Synthesis in Soybean
Cells as a Ca2+ -Dependent Process. Plant Physiology,
77(3), 544-551. | |
dc.relation | Krishnamurthy, S. R., Janowski, A. B., Zhao, G., Barouch,
D., & Wang, D. (2016). Hyperexpansion of rna
bacteriophage diversity. Plos Biology, 14(3): e1002409.
doi:10.1371/journal.pbio.1002409. | |
dc.relation | Kuchitsu, K., Kosaka, H., Shiga, T., & Shibuya, N. (1995).
epr evidence for generation of hydroxyl radical triggered
by N-acetylchitooligosaccharide elicitor and a protein
phosphatase inhibitor in suspension-cultured rice
cells. Protoplasma, 188(1-2), 138-142. doi:10.1007/
BF01276805. | |
dc.relation | Kusaba, M. (2004). rna interference in crop plants. Current
Opinion in Biotechnology, 15(2), 139-143. doi:10.1016/j.
copbio.2004.02.004. | |
dc.relation | Lee, Y. A., Hendson, M., Panopoulos, N. J., & Schroth, M.
N. (1994). Molecular cloning, chromosomal mapping,
and sequence analysis of copper resistance genes from
Xanthomonas campestris pv. juglandis: homology with
small blue copper proteins and multicopper oxidase.
Journal of Bacteriology, 176(1), 173-188. | |
dc.relation | Li, R.-X., Cai, F., Pang, G., Shen, Q.-R., Li, R., & Chen, W.
(2015). Solubilisation of phosphate and micronutrients
by Trichoderma harzianum and its relationship with the
promotion of tomato plant growth. Plos One, 10(6):
e0130081. doi:10.1371/journal.pone.0130081. | |
dc.relation | Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the
Phyllosphere. Applied and Environmental Microbiology,
69(4), 1875-1883. doi:10.1128/AEM.69.4.1875-
1883.2003. | |
dc.relation | Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E. R.
B., Taghavi, S., Mezgeay, M., & der Lelie, D. v. (2002).
Endophytic bacteria and their potential applications.
Critical Reviews in Plant Science, 21(6), 583-606.
doi:10.1080/0735-260291044377. | |
dc.relation | Lugtenberg, B., & Kamilova, F. (2009). Plant-GrowthPromoting Rhizobacteria. Annual Review of
Microbiology, 63, 541-556. doi:10.1146/annurev.
micro.62.081307.162918. | |
dc.relation | Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S.,
Gehring, J., Malfatti, S., … Dangl, J. L. (2012). Defining
the core Arabidopsis thaliana root microbiome. Nature,
488 (7409), 86-90. doi:10.1038/nature11237. | |
dc.relation | Maiyappan, S., Amalraj, E., Santhosh, A., & Peter, A.
(2010). Isolation, evaluation and formulation of selected
microbial consortia for sustainable agriculture. Journal of
Biofertilizers & Biopesticides, 2(2), 109. doi:10.4172/2155-
6202.1000109. | |
dc.relation | Majumdar, R., Rajasekaran, K., & Cary, J. W. (2017). rna
interference (RNAi) as a potential tool for control of mycotoxin contamination in crop plants: Concepts
and considerations. Frontiers in Plant Science, 8, 200.
doi:10.3389/fpls.2017.00200. | |
dc.relation | Mallmann, W., & Hemstreet, C. (1924). Isolation of an
inhibitory substance from plants. Agricultural Research,
28(6), 599-602. Recuperado de https://naldc.nal.usda.
gov/download/IND43966880/PDF. | |
dc.relation | Mao, Y.-B., Cai, W.-J., Wang, J.-W., Hong, G.-J., Tao, X.-Y.,
Wang, L.-J., … Chen, X.-Y. (2007). Silencing a cotton
bollworm P450 monooxygenase gene by plant-mediated
RNAi impairs larval tolerance of gossypol. Nature
Biotechnology, 25(11), 1307-1313. doi:10.1038/nbt1352. | |
dc.relation | Marques, M. P., Walshe, K., Doyle, S., Fernandes, P., & De
Carvalho, C. C. (2012). Anchoring high-throughput
screening methods to scale-up bioproduction of
siderophores. Process Biochemistry, 47(3), 416-421. h
doi:10.1016/j.procbio.2011.11.020. | |
dc.relation | Massart, S., Martinez-Medina, M., & Jijakli, M. H. (2015).
Biological control in the microbiome era: Challenges
and opportunities. Biological Control, 89, 98-108.
doi:10.1016/j.biocontrol.2015.06.003. | |
dc.relation | Matsubara, M., Lynch, J., & De Leij, F. (2006). A simple
screening procedure for selecting fungi with potential
for use in the bioremediation of contaminated land.
Enzyme and Microbial Technology, 39(7), 1365-1372.
doi:10.1016/j.enzmictec.2005.04.025. | |
dc.relation | McManus, P. S., Stockwell, V. O., Sundin, G. W. & Jones,
A. L. (2002). Antibiotic use in plant agriculture. Annual
Review of Phytopathology, 40, 443-465. doi:10.1146/
annurev.phyto.40.120301.093927. | |
dc.relation | Meena, A. K., Verma, L., & Kumhar, B. L. (2017). RNAi,
it’s mechanism and potential use in crop improvement: A
review. International Journal of Pure & Applied Bioscience,
5(2), 294-311. doi:10.18782/2320-7051.2890. | |
dc.relation | Mendes, R. (2012). Microbioma da rizosfera e proteção de
plantas. En Congresso Paulista de Fitopatologia 35º,
Summa Phytopathologica, 38 (supplement). [cd-rom].
Jaguariúna, Brasil. | |
dc.relation | Menzies, J. D. (1959). Occurrence and transfer of abiological
factor in soil that suppresses potato scab. Phytopathology,
49, 648-652. | |
dc.relation | Merzendorfer, H., & Zimoch, L. (2003). Chitin metabolism
in insects: structure, function and regulation of chitin
synthases and chitinases. Journal of Experimental Biology,
206, 4393-4412. doi:10.1242/jeb.00709. | |
dc.relation | Minami, E., Kuchitsu, K., He, D. Y., Kouchi, H., Midoh,
N., Ohtsuki, Y., & Shibuya, N. (1996). Two novel genes
rapidly and transiently activated in suspension-cultured
rice cells by treatment with N-acetylchitoheptaose, a
biotic elicitor for phytoalexin production. Plant and Cell
Physiology, 37(4), 563-567. | |
dc.relation | 31-43. Recuperado de https://www.researchgate.net/
publication/285023312_Chitosan_and_trichoderma_
harzianum_as_fungicide_alternatives_for_controlling_
fusarium_crown_and_root_rot_of_tomato. | |
dc.relation | El Hadrami, A., Adam, L. R., El Hadrami, I., & Daayf, F.
(2010). Chitosan in plant protection. Marine Drugs, 8(4),
968-987. doi:10.3390/md8040968. | |
dc.relation | Ezra, D., Castillo, U. F., Strobel, G. A., Hess, W. M., Porter,
H., Jensen, J. B., … Yaver, D. (2004). Coronamycins,
peptide antibiotics produced by a verticillate Streptomyces
sp. (MSU-2110) endophytic on Monstera sp.Microbiology,
150(4), 785-793. doi:10.1099/mic.0.26645-0. | |
dc.relation | Ezzi, M. I., & Lynch, J. M. (2005). Biodegradation of cyanide
by Trichoderma spp. and Fusarium spp. Enzyme and
Microbial Technology, 36(7), 849-854. doi:10.1016/j.
enzmictec.2004.03.030. | |
dc.relation | Faeth, S. H., & Fagan, W. F. (2002). Fungal endophytes:
Common host plant symbionts but uncommon
mutualists. Integrative and Comparative Biology, 42(2),
360-368. doi:10.1093/icb/42.2.360 | |
dc.relation | Fakhro, A., Andrade-Linares, D. R., Von Bargen, S., Bandte,
M., Büttner, C., Grosch, R., … Franken, P. (2010).
Impact of Piriformospora indica on tomato growth and on
interaction with fungal and viral pathogens. Mycorrhiza,
20(3), 191-200. doi:10.1007/s00572-009-0279-5. | |
dc.relation | Felix, G., Baureithel, K., & Boller, T. (1998). Desensitization
of the perception system for chitin fragments in tomato
cells. Plant Physiology, 117(2), 643-650. | |
dc.relation | Felix, G., Regenass, M., & Boller, T. (1993). Specific
perception of subnanomolar concentrations of chitin
fragments by tomato cells: induction of extracellular
alkalinization, changes in protein phosphorylation, and
establishment of a refractory state. The Plant Journal, 4(2),
307-316. doi:10.1046/j.1365-313X.1993.04020307.x. | |
dc.relation | Ferri, M., Franceschetti, M., Naldrett, M. J., Saalbach,
G., & Tassoni, A. (2014). Effects of chitosan on the
protein profile of grape cell culture subcellular fractions.
Electrophoresis, 35(11), 1685-1692. doi:10.1002/
elps.201300624. | |
dc.relation | Figueroa-López, A. M., Cordero-Ramírez, J. D., MartínezÁlvarez, J. C., López-Meyer, M., Lizárraga-Sánchez, G.
J., Félix-Gastélum, R., ... Maldonado-Mendoza, I. E.
(2016). Rhizospheric bacteria of maize with potential for
biocontrol of Fusarium verticillioides. Springerplus, 5, 330.
doi:10.1186/s40064-016-1780-x. | |
dc.relation | Figueroa-López, A. M., Cordero-Ramírez, J. D., QuirozFigueroa, F. R., & Maldonado-Mendoza, I. E. (2014).
A high-throughput screening assay to identify bacterial
antagonists against Fusarium verticillioides. Journal of
Basic Microbiology, 54(1), S125-133. doi:10.1002/
jobm.201200594 | |
dc.relation | Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver,
S. E, & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded rna in Caenorhabditis
elegans. Nature, 391 (6669), 806-811. | |
dc.relation | Fondong, V. N., Nagalakshmi, U., & Dinesh-Kumar, S.
P. (2016). Novel functional genomics approaches: a
promising future in the combat against plant viruses.
Phytopathology, 106(10), 1231-1239. doi:10.1094/
PHYTO-03-16-0145-FI. | |
dc.relation | Forchetti, G., Masciarelli, O., Alemano, S., Alvarez, D., &
Abdala, G. (2007). Endophytic bacteria in sunflower
(Helianthus annuus L.): isolation, characterization, and
production of jasmonates and abscisic acid in culture
medium. Applied Microbiology and Biotechnology, 76(5),
1145-1152. doi:10.1007/s00253-007-1077-7. | |
dc.relation | Frampton, R. A., Pitman, A. R., & Fineran, P. C. (2012).
Advances in bacteriophage-mediated control of plant
pathogens. International Journal of Microbiology, 2012,
1-11. doi:10.1155/2012/326452. | |
dc.relation | Fravel, D. (2005). Commercialization and implementation of
biocontrol. Annual Review of Phytopathology, 43, 337-359.
doi:10.1146/annurev.phyto.43.032904.092924. | |
dc.relation | Ghorbanpour, M., Hatami, M., & Khavazi, K. (2013). Role
of plant growth promoting rhizobacteria on antioxidant
enzyme activities and tropane alkaloid production of
Hyoscyamus niger under water deficit stress. Turkish
Journal of Biology, 37(3), 350-360. doi:10.3906/biy1209-12. | |
dc.relation | Gill, J., & Abedon, S. T. (2003). Bacteriophage ecology
and plants. APS Feature Stories. doi:10.1094/
APSnetFeature-2003-1103. | |
dc.relation | Giller, K. E., Witter, E., & Mcgrath, S. P. (1998). Toxicity
of heavy metals to microorganisms and microbial
processes in agricultural soils: a review. Soil Biology
& Biochemistry, 30(10-11), 1389-1414. doi:10.1016/
S0038-0717(97)00270-8 | |
dc.relation | Gortari, M. C., & Hours, R. A. (2008). Fungal chitinases and
their biological role in the antagonism onto nematode
eggs. A review. Mycological Progress, 7(4), 221-238.
doi:10.1007/s11557-008-0571-3. | |
dc.relation | Goy, R. C., Britto, D., & Assis, O. B. G. (2009). A review
of the antimicrobial activity of chitosan. Polímeros 19(3),
241-247. doi:10.1590/S0104-14282009000300013. | |
dc.relation | Goyal, S., Lambert, C., Cluzet, S., Mérillon, J. M., &
Ramawat, K. G. (2012). Secondary metabolites and plant
defence. En J. M. Mérillon & K. G. Ramawat (Eds.), Plant
Defence: Biological Control (pp. 109-138). Dordrecht,
Países Bajos: Springer | |
dc.relation | Gozzo, F., & Faoro, F. (2013). Systemic acquired resistance
(50 years after discovery): moving from the lab to the
field. Journal of Agricultural and Food Chemistry, 61(51),
12473-12491. doi:10.1021/jf404156x. | |
dc.relation | Grose, J. H., & Casjens, S. R. (2014). Understanding the
enormous diversity of bacteriophages: the tailed phages | |
dc.relation | Cooper, R. L., Laws, S. C., Das, P. C., Narotsky, M. G.,
Goldman, J. M., Lee Tyrey, E., & Stoker, T. E. (2007).
Atrazine and reproductive function: mode and
mechanism of action studies. Birth Defects Research
Part B: Developmental and Reproductive Toxicology, 80(2),
98-112. | |
dc.relation | Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W., &
Guttman, D. S. (2015). Seasonal community succession
of the phyllosphere microbiome. Molecular Plant-Microbe
Interactions, 28(3), 274-285. doi:10.1094/MPMI-10-14-
0331-FI. | |
dc.relation | Cotes, A. M., Lepoivre, P., & Semal, J. (1996). Correlation
between hydrolytic enzyme activities measured in bean
seedlings after Trichoderma koningii treatment combined
with pregermination and the protective effect against
Pythium splendens. European Journal of Plant Pathology,
102(5), 497-506. | |
dc.relation | Craigie, J. S. (2011). Seaweed extract stimuli in plant science
and agriculture. Journal of Applied Phycology, 23(3), 371-
393. doi:10.1007/s10811-010-9560-4. | |
dc.relation | D’Herelle, F. (1911). Sur une épizootie de nature bactérienne
sévissant sur les sauterelles au Mexique. Comptes rendus
hebdomadaires des séances de l’Acadédemie des sciences, 152,
1413-1415. | |
dc.relation | Dalton, D. A., Kramer, S., Azios, N., Fusaro, S., Cahill, E.,
Kennedy, C. (2004). Endophytic nitrogen fixation in
dune grasses (Ammophila arenaria and Elymus mollis)
from Oregon. FEMS Microbiology Ecology, 49(3), 469-
479. doi:10.1016/j.femsec.2004.04.010. | |
dc.relation | Das, K., & Mukherjee, A. K. (2007). Crude petroleumoil biodegradation efficiency of Bacillus subtilis and
Pseudomonas aeruginosa strains isolated from a
petroleum-oil contaminated soil from North-East India.
Bioresource Technology, 98(7), 1339-1345. doi:10.1016/j.
biortech.2006.05.032 | |
dc.relation | De Jin, R., Suh, J. W., Park, R. D., Kim, Y. W., Krishnan, H.,
& Kim, K. Y. (2005). Effect of chitin compost and broth
on biological control of Meloidogyne incognita on tomato
(Lycopersicon esculentum Mill.). Nematology, 7(1), 125-
132 | |
dc.relation | De Vasconcellos, R. L. F., & Cardoso, E. J. B. N. (2009).
Rhizospheric streptomycetes as potential biocontrol
agents of Fusarium and Armillaria pine rot and as pgpr
for Pinus taeda. BioControl, 54(6), 807 | |
dc.relation | De Vasconcellos, R. L. F., & Cardoso, E. J. B. N. (2009).
Rhizospheric streptomycetes as potential biocontrol
agents of Fusarium and Armillaria pine rot and as pgpr
for Pinus taeda. BioControl, 54(6), 807 | |
dc.relation | Dick, R. P. (1992). A review: long-term effects of agricultural
systems on soil biochemical and microbial parameters.
Agriculture, Ecosystems & Environment, 40(1-4), 25-36.
doi:10.1016/0167-8809(92)90081-L. | |
dc.relation | Djonović, S., Pozo, M. J., Dangott, L. J., Howell, C. R., &
Kenerley, C. M. (2006). Sm1, a proteinaceous elicitor
secreted by the biocontrol fungus Trichoderma virens Induces plant defense responses and systemic resistance.
Molecular Plant-Microbe Interactions, 19(8), 838-853.
doi:10.1094/MPMI-19-0838. | |
dc.relation | Djonović, S., Vargas, W. A., Kolomiets, M. V., Horndeski,
M., Wiest, A., & Kenerley, C. M. (2007). A proteinaceous
elicitor Sm1 from the beneficial fungus Trichoderma
virens is required for induced systemic resistance in
maize. Plant Physiology, 145(3), 875-889. doi:10.1104/
pp.107.103689. | |
dc.relation | Dong, Y.-H., Xu, J.-L., Li, X.-Z., & Zhang, L.-H. (2000).
AiiA, an enzyme that inactivates the acylhomoserine
lactone quorum-sensing signal and attenuates the
virulence of Erwinia carotovora. Proceedings of the National
Academy of Sciences, 97(7), 3526-3531. doi:10.1073/
pnas.060023897. | |
dc.relation | Doornbos, R. F., van Loon, L. C., & Bakker, P. A. H. M.
(2012). Impact of root exudates and plant defense
signaling on bacterial communities in the rhizosphere. A
review. Agronomy for Sustainable Development, 32(1), 227-
243. doi:10.1007/s13593-011-0028-y | |
dc.relation | Du Jardin, P. (2012). The Science of Plant Biostimulants -
A bibliographic analysis. [Ad hoc study report to the
European Commission DG Enterprise and Industry].
Recuperado de http://hdl.handle.net/2268/169257. | |
dc.relation | Du Jardin, P. (2015). Plant biostimulants: Definition, concept,
main categories and regulation. Scientia Horticulturae,
196, 3-14. doi:10.1016/j.scienta.2015.09.021. | |
dc.relation | Duan, C.-G., Wang, C.-H., & Guo, H.-S. (2012). Application
of rna silencing to plant disease resistance. Silence, 3(1),
5. doi:10.1186/1758-907X-3-5. | |
dc.relation | Duffy, B. K., Simon, A., & Weller, D. (1996). Combination
of Trichoderma koningii with fluorescent pseudomonads
for control of take-all on wheat. Phytopathology,
86(2), 188-194. Recuperado de https://www.apsnet.
org/publ ications/phytopathology/backissues/
Documents/1996Articles/Phyto86n02_188.pdf. | |
dc.relation | Dye, D. W. (1953). Control of Pseudomonas syringae
with streptomycin. Nature, 172, 683-684.
doi:10.1038/172683a0. | |
dc.relation | El-Ghaouth, A., Arul, J., Ponnampalam, R., & Boulet, M.
(1991). Use of chitosan coating to reduce water loss and
maintain quality of cucumber and bell pepper fruits.
Journal of Food Processing and Preservation, 15, 359-368.
doi:10.1111/j.1745-4549.1991.tb00178.x. | |
dc.relation | El-Ghaouth, A., Ponnampalam, R., Castaigne, F., & Arul,
J. (1992). Chitosan coating to extend the storage life of
tomatoes. HortScience, 27(9), 1016-1018. | |
dc.relation | El-Mohamedy, R. S., Abdel-Kareem, F., JabounKhiareddine, H., & Daami-Remadi, M. (2014).
Chitosan and Trichoderma harzianum as fungicide
alternatives for controlling Fusarium crown and root
rot of tomato. Tunisian Journal of Plant Protection, 9, | |
dc.relation | Jain, A., Singh, A., Singh, S., & Singh, H. B. (2015). Biological
management of Sclerotinia sclerotiorum in pea using
plant growth promoting microbial consortium. Journal
of Basic Microbiology, 55(8), 961-972. doi:10.1002/
jobm.201400628. | |
dc.relation | Jain, R., Poulos, M. G., Gros, J., Chakravarty, A. K., &
Shuman, S. (2011). Substrate specificity and mutational
analysis of Kluyveromyces lactis gamma-toxin, a eukaryal
tRNA anticodon nuclease. RNA, 17(7), 1336-1343.
doi:10.1261/rna.2722711. | |
dc.relation | Jalilzadeh Yengejeh, R., Sekhavatjou, M., Maktabi, P., Arbab
Soleimani, N., Khadivi, S., & Pourjafarian, V. (2014).
The biodegradation of crude oil by Bacillus subtilis
isolated from contaminated soil in hot weather areas.
International Journal of Environmental Research, 8(2), 509-
514. doi:10.22059/ijer.2014.744 | |
dc.relation | Jetiyanon, K. (2007). Defensive-related enzyme response in
plants treated with a mixture of Bacillus strains (IN937a
and IN937b) against different pathogens. Biological
Control, 42(2), 178-185. | |
dc.relation | Kaku, H., Shibuya, N., Xu, P., Aryan, A. P., & Fincher,
G. B. (1997). N-acetylchitooligosaccharides
elicit expression of a single (1→3)-β-glucanase gene in
suspension-cultured cells from barley (Hordeum vulgare).
Physiologia Plantarum, 100, 111-118. doi:10.1111/
j.1399-3054.1997.tb03460.x | |
dc.relation | Kannan, V., & Sureendar, R. (2009). Synergistic effect of
beneficial rhizosphere microflora in biocontrol and plant
growth promotion. Journal of Basic Microbiology, 49, 158-
164. doi:10.1002/jobm.200800011. | |
dc.relation | Katiyar, D., Hemantaranjan, A., & Singh, B. (2015). Chitosan
as a promising natural compound to enhance potential
physiological responses in plant: a review. Indian Journal
of Plant Physiology, 20(1), 1-9. doi:10.1007/s40502-015-
0139-6. | |
dc.relation | Katznelson, H. (1937). Bacteriophage in relation to plant
diseases. The Botanical Review, 3, 499. doi:10.1007/
BF02870486. | |
dc.relation | Kauffman, G. L., Kneivel, D. P., & Watschke, T. L.
(2007). Effects of a biostimulant on the heat tolerance
associated with photosynthetic capacity, membrane
thermostability, and polyphenol production of perennial
ryegrass. Crop Science, 47(1), 261-267. doi:10.2135/
cropsci2006.03.0171. | |
dc.relation | Kembel, S. W., O’Connor, T. K., Arnold, H. K., Hubbell,
S. P., Wright, S. J., & Green, J. L. (2014). Relationships
between phyllosphere bacterial communities and plant
functional traits in a neotropical forest. Proceedings of the
National Academy of Sciences, 111(38), 13715-13720.
doi:10.1073/pnas.1216057111. | |
dc.relation | Kesarcodi-Watson, A., Kaspar, H., Lategan, M. J., &
Gibson, L. (2008). Probiotics in aquaculture: the need, principles and mechanisms of action and screening
processes. Aquaculture, 274(1), 1-14. doi:10.1016/j.
aquaculture.2007.11.019. | |
dc.relation | Keswani, C., Mishra, S., Sarma, B. K., Singh, S. P., & Singh,
H. B. (2014). Unraveling the efficient applications of
secondary metabolites of various Trichoderma spp.
Applied Microbiology and Biotechnology, 98(2), 533-544.
doi:10.1007/s00253-013-5344-5. | |
dc.relation | Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N.,
Rayorath, P., Hodges, D. M., … Prithiviraj, B. (2009).
Seaweed extracts as biostimulants of plant growth and
development. Journal of Plant Growth Regulation, 28(4),
386-399. doi:10.1007/s00344-009-9103-x | |
dc.relation | Kikuyama, M., Kuchitsu, K., & Shibuya, N. (1997). Membrane
depolarization induced by N-acetylchitooligosaccharide
elicitor in suspension-cultured rice cells. Plant and Cell
Physiology, 38(8), 902-909. doi:10.1093/oxfordjournals.
pcp.a029250. | |
dc.relation | Kloepper, J. W., Rodríguez-Kábana, R., Zehnder, A. W.,
Murphy, J. F., Sikora, E., & Fernández, C. (1999).
Plant root-bacterial interactions in biological control of
soilborne diseases and potential extension to systemic and
foliar diseases. Australasian Plant Pathology, 28(1), 21-26.
doi:10.1071/AP99003. | |
dc.relation | Kloepper, J., Reddy, M., Rodríguez-Kabana, R., Kenney,
D., Kokalis-Burelle, N., & Martinez-Ochoa, N. (2004).
Application for rhizobacteria in transplant production
and yield enhancement. Acta Horticulturae, 631, 219-229.
doi:10.17660/ActaHortic.2004.631.28. | |
dc.relation | Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N.
(1980). Enhanced plant growth by siderophores produced
by plant growth-promoting rhizobacteria. Nature, 286,
885-886. doi:10.1038/286885a0. | |
dc.relation | Kloepper, J. W., Lifshitz, R., & Zablotowicz, R. M.
(1989). Free-living bacterial inocula for enhancing
crop productivity. Trends in Biotechnology, 7(2), 39-44.
doi:10.1016/0167-7799(89)90057-7. | |
dc.relation | Knip, M., Constantin, M. E., & Thordal-Christensen, H.
(2014). Trans-kingdom cross-talk: Small RNAs on the
move. Plos Genetics, 10(9): e1004602. doi:10.1371/
journal.pgen.1004602. | |
dc.relation | Koberl, M., Schmidt, R., Ramadan, E. M., Bauer, R., &
Berg, G. (2013). The microbiome of medicinal plants:
diversity and importance for plant growth, quality and
health. Frontiers in Microbiology, 4, 400. doi:10.3389/
fmicb.2013.00400. | |
dc.relation | Koch, A., Biedenkopf, D., Furch, A., Weber, L., Rossbach, O.,
Abdellatef, E., … Kogel, K.-H. (2016). An RNAi-based
control of Fusarium graminearum infections through
spraying of long dsRNAs involves a plant passage and
is controlled by the fungal silencing machinery. Plos
Pathogens, 12(10): e1005901. doi:10.1371/journal.
ppat.1005901. that infect the bacterial family Enterobacteriaceae. Virology,
468, 421-443. doi:10.1016/j.virol.2014.08.024. | |
dc.relation | Groszhans, H., & Filipowicz, W. (2008). Molecular biology:
The expanding world of small RNAs. Nature, 451(7177),
414-416. doi:10.1038/451414a. | |
dc.relation | Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., ...
Chen, J. (2010). Bioremediation of heavy metals by
growing hyperaccumulaor endophytic bacterium Bacillus
sp. L14. Bioresource Technology, 101(22), 8599-8605.
doi:10.1016/j.biortech.2010.06.085. | |
dc.relation | Guo, S., & Kemphues, K. J. (1995). par-1, a gene required
for establishing polarity in C. elegans embryos, encodes
a putative Ser/Thr kinase that is asymmetrically
distributed. Cell, 81(4), 611-620. | |
dc.relation | Haas, D., & Keel, C. (2003). Regulation of antibiotic
production in root-colonizing Pseudomonas spp. and
relevance for biological control of plant disease. Annual
Review of Phytopathology, 41, 117-153. doi:10.1146/
annurev.phyto.41.052002.095656. | |
dc.relation | Hadwiger, L. A. (2013). Multiple effects of chitosan on plant
systems: Solid science or hype. Plant Science, 208, 42-49.
doi:10.1016/j.plantsci.2013.03.007. | |
dc.relation | Haichar, F. E. Z., Marol, C., Berge, O., Rangel-Castro, J. I.,
Prosser, J. I., Balesdent, J. M., … Achouak, W. (2008).
Plant host habitat and root exudates shape soil bacterial
community structure. The ISME Journal, 2(12), 1221-
1230. doi:10.1038/ismej.2008.80. | |
dc.relation | Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T.,
& Yermiyahu, U. (2015). Chapter two - The use of
biostimulants for enhancing nutrient uptake. En D. L.
Sparks (Ed.), Advances in Agronomy (vol. 130, pp. 141-
174). doi:10.1016/bs.agron.2014.10.001. | |
dc.relation | Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F.,
& Kloepper, J. W. (1997). Bacterial endophytes in
agricultural crops. Canadian Journal of Microbiology,
43(10), 895-914. doi:10.1139/m97-131. | |
dc.relation | Hammerschmidt, R. (1999). Phytoalexins: What have we
learned after 60 years? Annual Review of Phytopathology,
37, 285-306. doi:10.1146/annurev.phyto.37.1.285. | |
dc.relation | Hardoim, P. R., Van Overbeek, L. S., & Elsas, J. D. v. (2008).
Properties of bacterial endophytes and their proposed
role in plant growth. Trends in Microbiology, 16(10), 463-
471. doi:10.1016/j.tim.2008.07.008. | |
dc.relation | Hariprasad, P., Navya, H., Chandra, S., & Niranjana, S.
(2009). Advantage of using psirb over psrb and irb to
improve plant health of tomato. Biological Control, 50(3),
307-316. doi:10.1016/j.biocontrol.2009.04.002 | |
dc.relation | Harish, S., Kavino, M., Kumar, N., Balasubramanian,
P., & Samiyappan, R. (2009). Induction of defenserelated proteins by mixtures of plant growth promoting
endophytic bacteria against Banana bunchy top virus. Biological Control, 51(1), 16-25. doi:10.1016/j.biocontrol.
2009.06.002. | |
dc.relation | Hirst, J. M., Le Riche, H. H., & Bascomb, C. L. (1961).
Copper accumulation in the soils of apple orchards
near wisbech. Plant Pathology, 10(3), 105-108.
doi:10.1111/j.1365-3059.1961.tb00127.x | |
dc.relation | Hoitink, H., & Boehm, M. (1999). Biocontrol within the
context of soil microbial communities: a substratedependent phenomenon. Annual Review of Phytopathology,
37, 427-446. doi:10.1146/annurev.phyto.37.1.427. | |
dc.relation | Hosseyni-Moghaddam, M. S., & Soltani, J. (2014). Bioactivity
of endophytic Trichoderma fungal species from the plant
family Cupressaceae. Annals of Microbiology, 64(2), 753-
761. doi:10.1007/s13213-013-0710-1. | |
dc.relation | Howell, C. R. (2003). Mechanisms employed by Trichoderma
species in the biological control of plant diseases: The
history and evolution of current concepts. Plant Disease,
87(1), 4-10. doi:10.1094/PDIS.2003.87.1.4. | |
dc.relation | Howell, C. R., Hanson, L. E., Stipanovic, R. D., & Puckhaber,
L. S. (2000). Induction of terpenoid synthesis in cotton
roots and control of Rhizoctonia solani by seed treatment
with Trichoderma virens. Phytopathology, 90(3), 248-252.
doi:10.1094/PHYTO.2000.90.3.248. | |
dc.relation | Huang, G., Allen, R., Davis, E. L., Baum, T. J., & Hussey,
R. S. (2006). Engineering broad root-knot resistance in
transgenic plants by RNAi silencing of a conserved and
essential root-knot nematode parasitism gene. Proceedings
of the National Academy of Sciences, 103(39), 14302-
14306. doi:10.1073/pnas.0604698103. | |
dc.relation | Huang, X., Chen, L., Ran, W., Shen, Q., & Yang, X.
(2011). Trichoderma harzianum strain SQR-T37 and
its bio-organic fertilizer could control Rhizoctonia solani
damping-off disease in cucumber seedlings mainly by the
mycoparasitism. Applied Microbiology and Biotechnology,
91(3), 741-755. doi:10.1007/s00253-011-3259-6. | |
dc.relation | Hunter, R. D., Ekunwe, S. I., Dodor, D. E., Hwang, H.-M., &
Ekunwe, L. (2005). Bacillus subtilis is a potential degrader
of pyrene and benzo[a]pyrene. International Journal of
Environmental Research and Public Health, 2(2), 267-271. | |
dc.relation | Iriarte, F. B., Balogh, B., Momol, M. T., Smith, L. M.,
Wilson, M., & Jones, J. B. (2007). Factors affecting
survival of bacteriophage on tomato leaf surfaces. Applied
and Environmental Microbiology, 73(6), 1704-1711.
doi:10.1128/AEM.02118-06. | |
dc.relation | Iriti, M., Picchi, V., Rossoni, M., Gomarasca, S., Ludwig, N.,
Gargano, M., & Faoro, F. (2009). Chitosan antitranspirant
activity is due to abscisic acid-dependent stomatal closure.
Environmental and Experimental Botany, 66, 493-500. | |
dc.relation | Iwamoto, Y., Aino, M., Kanto, T., & Maekawa, K. (2003).
Effective fungicides on Olpidium brassicae causing lettuce
big-vein disease and optimum drenching conditions.
Japanese Journal of Phytopathology, 69(4), 366-372. | |
dc.relation | Mishra, J., Tewari, S., Singh, S., & Kumar, N. (2015).
Biopesticides: Where We Stand? En N. K. Arora (Ed.),
Plant Microbes Symbiosis: Applied Facets (pp. 37-75).
Nueva Delhi, India: Springer. | |
dc.relation | Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R.G.,
Taochy, C., … Xu, Z. P. (2017). Clay nanosheets for
topical delivery of RNAi for sustained protection against
plant viruses. Nature Plants, 3(2), 1-10. doi:10.1038/
nplants.2016.207. | |
dc.relation | Montesinos, E. (2003). Development, registration and
commercialization of microbial pesticides for plant
protection. International Microbiology, 6(4), 245-252.
doi:10.1007/s10123-003-0144-x. | |
dc.relation | Moore, E. S. (1926). D’Herelle’s bacteriophage in relation to
plant parasites. South African Journal of Science, 23, 306. | |
dc.relation | Moradi, H., Bahramnejad, B., Amini, J., Siosemardeh, A., &
Haji-Allahverdipoor, K. (2012). Suppression of chickpea
(Cicer arietinum L.) Fusariums wilt by Bacillus subtillis and
Trichoderma harzianum. Plant Omics, 5(2), 68-74. | |
dc.relation | Moreno, C., Castillo, F., González, A., Bernal, D., Jaimes,
Y., Chaparro, M., … Cotes, A. (2009). Biological and
molecular characterization of the response of tomato
plants treated with Trichoderma koningiopsis. Physiological
and Molecular Plant Pathology, 74(2), 111-120.
doi:10.1046/j.1365-2672.2000.00939.x. | |
dc.relation | Mulaw, T., Druzhinina, I., Kubicek, C., & Atanasova, L.
(2013). Novel endophytic Trichoderma spp. isolated from
healthy Coffea arabica roots are capable of controlling
coffee tracheomycosis. Diversity, 5(4), 750-766.
doi:10.3390/d5040750. | |
dc.relation | Namdeo, A. (2007). Plant cell elicitation for production of
secondary metabolites: A review. Pharmacognosy Review,
1(1), 69-79. | |
dc.relation | Napoli, C., Lemieux, C., & Jorgensen, R. (1990). Introduction
of a chimeric chalcone synthase gene into petunia results
in reversible co-suppression of homologous genes in trans.
The Plant Cell, 2, 279-289. Recuperado de http://www.
plantcell.org/content/plantcell/2/4/279.full.pdf | |
dc.relation | Neilands, J. (1995). Siderophores: structure and function
of microbial iron transport compounds. Journal of
Biological Chemistry, 270, 26723-26726. doi:10.1074/
jbc.270.45.26723. | |
dc.relation | Ngo, H., Tschudi, C., Gull, K., & Ullu, E. (1998).
Double-stranded rna induces mRNA degradation in
Trypanosoma brucei. Proceedings of the National Academy
of Sciences, 95(25), 14687-14692. | |
dc.relation | Nielsen, P., & Sørensen, J. (1997). Multi-target and mediumindependent fungal antagonism by hydrolytic enzymes in
Paenibacillus polymyxa and Bacillus pumilus strains from
barley rhizosphere. FEMS Microbiology Ecology, 22(3),
183-192. doi:10.1111/j.1574-6941.1997.tb00370.x. | |
dc.relation | Nishizawa, Y., Kawakami, A., Hibi, T., He, D.-Y., Shibuya,
N., & Minami, E. (1999). Regulation of the chitinase
gene expression in suspension-cultured rice cells by
N-acetylchitooligosaccharides: differences in the signal
transduction pathways leading to the activation of
elicitor-responsive genes. Plant Molecular Biology, 39(5),
907-914. doi:10.1023/A:1006161802334. | |
dc.relation | Nojiri, H., Sugimori, M., Yamane, H., Nishimura, Y., Yamada,
A., Shibuya, N., … Omori, T. (1996). Involvement of
jasmonic acid in elicitor-induced phytoalexin production
in suspension-cultured rice cells. Plant Physiology, 110,
387-392. doi:10.1104/pp.110.2.387. | |
dc.relation | Nongmaithem, N., Roy, A., & Bhattacharya, P. M. (2016).
Screening of Trichoderma isolates for their potential
of biosorption of nickel and cadmium. Brazilian
Journal of Microbiology, 47(2), 305-313. doi:10.1016/j.
bjm.2016.01.008. | |
dc.relation | Nowara, D., Gay, A., Lacomme, C., Shaw, J., Ridout, C.,
Douchkov, D., … Schweizer, P. (2010). higs: hostinduced gene silencing in the obligate biotrophic fungal
pathogen Blumeria graminis. The Plant Cell, 22(9), 3130-
3141. Recuperado de http://www.plantcell.org/content/
plantcell/22/9/3130.full.pdf. | |
dc.relation | Nunes, C. C., & Dean, R. A. (2012). Host-induced gene
silencing: a tool for understanding fungal host interaction
and for developing novel disease control strategies.
Molecular Plant Pathology, 13(5), 519-529. doi:10.1111/
j.1364-3703.2011.00766.x. | |
dc.relation | O'Sullivan, M., Stephens, P. M., & O'Gara, F. (1991).
Extracellular protease production by fluorescent
Pseudomonas spp. and the colonization of sugarbeet roots
and soil. Soil Biology & Biochemistry, 23(7), 623-627.
doi:10.1016/0038-0717(91)90074-T. | |
dc.relation | Ochoa, J. M., & Cotes, A. M. (1998). Evaluación de la actividad
biocontroladora de Pseudomonas fluorescens, Streptomyces
coelicolor y Trichoderma hamatum mediante su actividad
individual y combinada para el control de Fusarium
oxysporum f. sp. dianthi. Fitopatología Colombiana, 22, 88-
93. | |
dc.relation | Ofek, M., Hadar, Y. & Minz, D. (2012). Ecology of root
colonizing Massilia (Oxalobacteraceae). Plos One, 7(7):
e40117. doi:10.1371/journal.pone.0040117. | |
dc.relation | Okabe, N., & Goto, M. (1963). Bacteriophages of Plant
Pathogens. Annual Review of Phytopathology, 1, 397-418.
doi:10.1146/annurev.py.01.090163.002145 | |
dc.relation | Omnilytics. (2018). Changing the way the world treats bacterial
disease. Recuperado de http://www.omnilytics.com/
agriculture/. | |
dc.relation | Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans,
A., Joris, B., … Thonart, P. (2007). Surfactin and
fengycin lipopeptides of Bacillus subtilis as elicitors of
induced systemic resistance in plants. Environmental Microbiology, 9(4), 1084-1090. doi:10.1111/j.1462-
2920.2006.01202.x. | |
dc.relation | Pal-Bhadra, M., Bhadra, U., & Birchler, J. A. (1997).
Cosuppression in Drosophila: Gene silencing of alcohol
dehydrogenase by white-adh transgenes is polycomb
dependent. Cell, 90(3), 479-490. | |
dc.relation | Panwar, V., McCallum, B., Jordan, M., Loewen, M., Fobert,
P., McCartney, C., Bakkeren, G. (2016). rna silencing
approaches for identifying pathogenicity and virulence
elements towards engineering crop resistance to
plant pathogenic fungi. CAB Reviews, 11(027), 1-13.
doi:10.1079/PAVSNNR201611027. | |
dc.relation | Pietrzak, U., & McPhail, D. C. (2004). Copper accumulation,
distribution and fractionation in vineyard soils of Victoria,
Australia. Geoderma, 122(2-4), 151-166. doi:10.1016/j.
geoderma.2004.01.005. | |
dc.relation | Pliego, C., Ramos, C., De Vicente, A., & Cazorla, F. M.
(2011). Screening for candidate bacterial biocontrol
agents against soilborne fungal plant pathogens. Plant
Soil, 340, 505-520. doi:10.1007/s11104-010-0615-8. | |
dc.relation | Povero, G., Loreti, E., Pucciariello, C., Santaniello, A., Di
Tommaso, D., Di Tommaso, G., ... Perata, P. (2011).
Transcript profiling of chitosan-treated Arabidopsis
seedlings. Journal of Plant Research, 124(5), 619-629.
doi:10.1007/s10265-010-0399-1. | |
dc.relation | Prakash Verma, J., Yadav, J., Tiwari, K., & Jaiswal, D.
(2013). Evaluation of plant growth promoting activities
of microbial strains and their effect on growth and
yield of chickpea (Cicer arietinum L.) in India. Soil
Biology and Biochemistry, 70, 33-37. doi:10.1016/j.
soilbio.2013.12.001. | |
dc.relation | Qian, J., Li, D., Zhan, G., Zhang, L., Su, W., & Gao, P.
(2012). Simultaneous biodegradation of Ni–citrate
complexes and removal of nickel from solutions by
Pseudomonas alcaliphila. Bioresource Technology, 116, 66-
73. doi:10.1016/j.biortech.2012.04.017. | |
dc.relation | Raaijmakers, J. M., De Bruijn, I., Nybroe, O., & Ongena, M.
(2010). Natural functions of lipopeptides from Bacillus
and Pseudomonas: more than surfactants and antibiotics.
FEMS Microbiology Reviews, 34(6), 1037-1062.
doi:10.1111/j.1574-6976.2010.00221.x. | |
dc.relation | Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G.,
& Steurbaut, W. (2003). Chitosan as antimicrobial agent:
Applications and mode of action. Biomacromolecules, 4(6),
1457-1465. doi:10.1021/bm034130m. | |
dc.relation | Rajasekhar, L., Satish, K., Sain, & Divya, J. (2016). Evaluation
of microbial consortium for plant health management
of pigeonpea. International Journal of Plant, Animal
and Environmental Sciences, 6(2), 107-113. Recuperado
de http://www.ijpaes.com/admin/php/uploads/958_
pdf.pdf. | |
dc.relation | Raupach, G. S., & Kloepper, J. W. (1998). Mixtures of
plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology,
88(11), 1158-1164. doi:10.1094/PHYTO.1998.88.11.
1158. | |
dc.relation | Raupach, G. S., Liu, L., Murphy, J. F., Tuzun, S., &
Kloepper, J. W. (1996). Induced systemic resistance in
cucumber and tomato against Cucumber mosaic virus
using plant growth-promoting rhizobacteria (pgpr).
Plant Disease, 80, 891-894. Recuperado de https://www.
apsnet.org/publications/PlantDisease/BackIssues/
Documents/1996Articles/PlantDisease80n08_
891.PDF. | |
dc.relation | Raymundo Raymundo, E., Nikolskii Gavrilov, I., Duwig, C.,
Prado Pano, B. L., Hidalgo Moreno, C. I., Gavi Reyes, F.,
& Figueroa Sandoval, B. (2009). Transporte de atrazina
en un andosol y un vertisol de México. Interciencia,
34(5), 330-337. Recuperado de http://www.redalyc.org/
articulo.oa?id=33911403005. | |
dc.relation | Ren, Y.-Y., & West, C.A. (1992). Elicitation of diterpene
biosynthesis in rice (Oryza sativa L.) by chitin.
Plant Physiology, 99, 1169-1178. doi: doi:10.1104/
pp.99.3.1169. | |
dc.relation | Renwick, A., Campbell, R., & Coe, S. (1991). Assessment of
in vivo screening systems for potential biocontrol agents
of Gaeumannomyces graminis. Plant Pathology, 40(4), 524-
532. doi:10.1111/j.1365-3059.1991.tb02415.x | |
dc.relation | Roberts, D. P., & Lohrke, S. M. (2003). United States
Department of Agriculture-Agricultural Research Service
research programs in biological control of plant diseases.
Pest Management Science, 59(6-7), 654-664. doi:10.1002/
ps.613. | |
dc.relation | Roby, D., Gadelle, A., & Toppan, A. (1987). Chitin
oligosaccharides as elicitors of chitinase activity in
melon plants. Biochemical and Biophysical Research
Communications, 143(3), 885-892. doi:10.1016/0006-
291X(87)90332-9. | |
dc.relation | Romano, N., & Macino, G. (1992). Quelling: transient
inactivation of gene expression in Neurospora crassa by
transformation with homologous sequences. Molecular
Microbiology, 6(22), 3343-3353. doi:10.1111/j.1365-2
958.1992.tb02202.x. | |
dc.relation | Rose, M., Patti, A., Little, K., Brown, A. L., Jackson, W.
R., & Cavagnaro, T. R. (2014). A meta-analysis and
review of plant-growth response to humic substances:
Practical implications for agriculture. En D. L. Sparks
(Ed.), Advances in Agronomy (1.
a
ed., vol. 124, pp. 37-89).
EE. UU.: Elsevier. doi:10.1016/B978-0-12-800138-7.00
002-4. | |
dc.relation | Rothstein, S. J., DiMaio, J., Strand, M., & Rice, D. (1987).
Stable and heritable inhibition of the expression of
nopaline synthase in tobacco expressing antisense rna.
Proceedings of the National Academy of Sciences, 84(23),
8439-8443. | |
dc.relation | Rudresh, D., Shivaprakash, M., & Prasad, R. (2005). Effect
of combined application of Rhizobium, phosphate
solubilizing bacterium and Trichoderma spp. on growth,
nutrient uptake and yield of chickpea (Ciceraritenium
L.). Applied Soil Ecology, 28(2), 139-146. doi:10.1016/j.
apsoil.2004.07.005. | |
dc.relation | Santos, A., Villamizar, L., García, M., Beltrán, C., & Cotes,
A. M. (2016). Biocontrol of Rhizoctonia solani and Tecia
solanivora in potato seed-tuber treated with a powder
formulation based on Trichoderma koningiopsis and
baculovirus. IOBC-WPRS Bulletin, 115, 47-53. | |
dc.relation | Senthilraja, G., Anand, T., Durairaj, C., Kennedy, J., Suresh,
S., Raguchander, T., & Samiyappan, R. (2010). A new
microbial consortia containing entomopathogenic
fungus, Beauveria bassiana and plant growth promoting
rhizobacteria, Pseudomonas fluorescens for simultaneous
management of leafminers and collar rot disease in
groundnut. Biocontrol Science and Technology, 20(5), 449-
464. doi:10.1080/09583150903576949. | |
dc.relation | Serfling, A., Wirsel, S. G. R., Lind, V., & Deising, H.
B. (2007). performance of the biocontrol fungus
Piriformospora indica on wheat under greenhouse and field
conditions. Phytopathology, 97, 523-531. doi:10.1094/
PHYTO-97-4-0523. | |
dc.relation | Shehata, H. R., Lyons, E. M., Jordan, K. S., & Raizada,
M. N. (2016). Relevance of in vitro agar based screens
to characterize the anti-fungal activities of bacterial
endophyte communities. BMC Microbiology, 16, 8.
doi:10.1186/s12866-016-0623-9. | |
dc.relation | Sheng, X., Chen, X., & He, L. (2008). Characteristics of an
endophytic pyrene-degrading bacterium of Enterobacter
sp. 12J1 from Allium macrostemon Bunge. International
Biodeterioration and Biodegradation, 62(2), 88-95.
doi:10.1016/j.ibiod.2007.12.003. | |
dc.relation | Shoresh, M., Harman, G. E. & Mastouri, F. (2010). Induced
systemic resistance and plant responses to fungal
biocontrol agents. Annual Review of Phytopathology, 48,
21-43. doi:10.1146/annurev-phyto-073009-114450. | |
dc.relation | Sindhu, S., & Dadarwal, K. (2001). Chitinolytic and
cellulolytic Pseudomonas sp. antagonistic to fungal
pathogens enhances nodulation by Mesorhizobium sp.
Cicer in chickpea. Microbiological Research, 156(4), 353-
358. doi:10.1078/0944-5013-00120. | |
dc.relation | Singh, A., Sarma, B. K., Upadhyay, R. S., & Singh, H. B. (2013).
Compatible rhizosphere microbes mediated alleviation of
biotic stress in chickpea through enhanced antioxidant
and phenylpropanoid activities. Microbiological Research,
168(1), 33-40. doi:10.1016/j.micres.2012.07.001. | |
dc.relation | Singh, D., Chaudhary, S., Kumar, R., Sirohi, P., Mehla,
K., Sirohi, A., … Singh, P. K. (2016). rna interference
technology applications and limitations. En I. Y.
Abdurakhmonov (Ed.), rna Interference, InTech. Recuperado de https://www.intechopen.com/books/rnainterference/rna-interference-technology-applicationsand-limitations. doi:10.5772/60631. | |
dc.relation | Skopp, J., Jawson, M., & Doran, J. (1990). Steady-state aerobic
microbial activity as a function of soil water content. Soil
Science Society of America Journal, 54(6), 1619-1625.
doi:10.2136/sssaj1990.03615995005400060018x. | |
dc.relation | Srinivasan, K., & Mathivanan, N. (2011). Plant growth
promoting microbial consortia mediated classical biocontrol
of sunflower necrosis virus disease. Journal of Biopesticides,
4(1), 65-72. Recuperado de http://www.jbiopest.com/
users/lw8/efiles/vol_4_1_241.pdf. | |
dc.relation | Stein, E., Molitor, A., Kogel, K.-H., & Waller, F. (2008). Systemic
resistance in Arabidopsis conferred by the mycorrhizal
fungus Piriformospora indica requires jasmonic acid
signaling and the cytoplasmic function of NPR1. Plant
and Cell Physiology, 49(11), 1747-1751. doi:10.1093/pcp/
pcn147. | |
dc.relation | Stockwell, V., Johnson, K., Sugar, D., & Loper, J. (2011).
Mechanistically compatible mixtures of bacterial
antagonists improve biological control of fire blight of
pear. Phytopathology, 101(1), 113-123. doi:10.1094/
PHYTO-03-10-0098 | |
dc.relation | Summers, W. C. (2005). Bacteriophage research: early history.
En E. Kutter & A. Sulakvelidze (Eds.), Bacteriophages:
Biology and applications (pp. 5-27). Boca Ratón,
EE. UU.: CRC Press. | |
dc.relation | Szittya, G., & Burgyán, J. (2013). Rna interference-mediated
intrinsic antiviral immunity in plants. En B. R. Cullen
(Ed.), Intrinsic immunity (pp. 153-181). Berlín, Alemania:
Springer | |
dc.relation | Takai, R., Hasegawa, K., Kaku, H., Shibuya, N., &
Minami, E. (2001). Isolation and analysis of expression
mechanisms of a rice gene, EL5, which shows structural
similarity to atl family from Arabidopsis, in response
to N-acetylchitooligosaccharide elicitor. Plant Science,
160(4), 577-583. doi:10.1016/S0168-9452(00)00390-3. | |
dc.relation | Tang, J., Liu, Y., Li, H., Wang, L., Huang, K., & Chen,
Z. (2015). Combining an antagonistic yeast with
harpin treatment to control postharvest decay of
kiwifruit. Biological Control, 89, 61-67. doi:10.1016/j.
biocontrol.2015.04.025. | |
dc.relation | Tang, K., Zhang, Y., Yu, M., Shi, X., Coenye, T., Bossier,
P., & Zhang, X.-H. (2013). Evaluation of a new highthroughput method for identifying quorum quenching
bacteria. Scientific Reports, 3, 2935. doi:10.1038/
srep02935. | |
dc.relation | Tenllado, F., Llave, C., & Dı́az-Ruı́z, J. R. (2004). rna
interference as a new biotechnological tool for the control
of virus diseases in plants. Virus Research, 102(1), 85-96.
doi:10.1016/j.virusres.2004.01.019. | |
dc.relation | Tharanathan, R. N., & Kittur, F. S. (2003). Chitin—The
undisputed biomolecule of great potential. Critical
Reviews in Food Science and Nutri | |
dc.relation | Thayer, P. L., & Stall, R. E. (1961). A survey of Xanthomonas
vesicatoria resistance to streptomycin. Proceedings of
the Florida State Horticultural Society, 1523, 163-165.
Recuperado de http://fshs.org/proceedings-o/1962-
vol-75/163-165%20(THAYER).pdf. | |
dc.relation | Thomas, R. (1935). A bacteriophage in relation to Stewart’s
disease of corn. Phytopathology, 25, 371-372. | |
dc.relation | Tian, H., Riggs, R. D., & Crippen, D. L. (2000). Control
of soybean cyst nematode by chitinolytic bacteria with
chitin substrate. Journal of Nematology, 32(4), 370-376.
Recuperado de https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2620463/pdf/370.pdf. | |
dc.relation | Twort, F. W. (1915). An investigation on the nature of
ultra-microscopic viruses. The Lancet, 186, 1241-1243.
doi:10.1016/S0140-6736(01)20383-3. | |
dc.relation | Van Buren, A. M., Andre, C., & Ishimaru, C. (1993).
Biological control of the bacterial ring rot pathogen by
endophytic bacteria isolated from potato. Phytopathology,
83, 140-146. | |
dc.relation | Van der Krol, A. R., Lenting, P. E., Veenstra, J., van der Meer,
I. M., Koes, R. E., Gerats, A. G., … Stuitje, A. R. (1988).
An anti-sense chalcone synthase gene in transgenic plants
inhibits flower pigmentation. Nature, 333, 866-869.
doi:10.1038/333866a0. | |
dc.relation | Van der Krol, A. R., Mur, L. A., Beld, M., Mol, J., & Stuitje,
A. R. (1990). Flavonoid genes in petunia: addition of a
limited number of gene copies may lead to a suppression
of gene expression. The Plant Cell, 2(4), 291-299. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC159886/pdf/020291.pdf. | |
dc.relation | Vega, F. E., Goettel, M. S., Blackwell, M., Chandler,
D., Jackson, M. A., Keller, S., … Roy, H. E. (2009).
Fungal entomopathogens: new insights on their
ecology. Fungal Ecology, 2(4), 149-159. doi:10.1016/j.
funeco.2009.05.001. | |
dc.relation | Vinale, F., Marra, R., Scala, F., Ghisalberti, E., Lorito,
M., & Sivasithamparam, K. (2006). Major secondary
metabolites produced by two commercial Trichoderma
strains active against different phytopathogens. Letters
in Applied Microbiology, 43(2), 143-148. doi:10.1111/
j.1472-765X.2006.01939.x. | |
dc.relation | Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R.,
Barbetti, M.J., Li, H., ... Lorito, M. (2008). A novel role
for Trichoderma secondary metabolites in the interactions
with plants. Physiological and Molecular Plant Pathology,
72(1-3), 80-86. doi:10.1016/j.pmpp.2008.05.005. | |
dc.relation | Vorholt, J. A. (2012). Microbial life in the phyllosphere.Nature
Reviews Microbiology, 10(12), 828-840. doi:10.1038/
nrmicro2910. | |
dc.relation | Vranova, V., Rejsek, K., Skene, K. R., & Formanek, P. (2011).
Non-protein amino acids: plant, soil and ecosystem
interactions. Plant Soil, 342(1), 31-48. doi:10.1007/
s11104-010-0673-y | |
dc.relation | Walker-Simmons, M., & Ryan, C. A. (1984). Proteinase
inhibitor synthesis in tomato leaves: Induction by chitosan
oligomers and chemically modified chitosan and chitin.
Plant Physiology, 76(3), 787-790. Recuperado de https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC1064374/
pdf/plntphys00581-0243.pdf | |
dc.relation | Wally, O. S. D., Critchley, A. T., Hiltz, D., Craigie, J. S.,
Han, X., Zaharia, L. I., … Prithiviraj, B. (2013a). Erratum to: regulation of phytohormone biosynthesis
and accumulation in Arabidopsis following treatment
with commercial extract from the marine macroalga
Ascophyllum nodosum. Journal of Plant Growth Regulation,
32(2), 340-341. doi:10.1007/s00344-012-9311-7. | |
dc.relation | Wally, O. S. D., Critchley, A.T., Hiltz, D., Craigie, J.S., Han,
X., Zaharia, L. I., … Prithiviraj, B. (2013b). Regulation
of phytohormone biosynthesis and accumulation in
Arabidopsis following treatment with commercial extract
from the marine macroalga Ascophyllum nodosum. Journal
of Plant Growth Regulation, 32(2), 324-339. doi:10.1007/
s00344-012-9301-9 | |
dc.relation | Wang, M., & Jin, H. (2017). Spray-induced gene silencing: a
powerful innovative strategy for crop protection. Trends in
Microbiology, 25(1), 4-6. doi:10.1016/j.tim.2016.11.011. | |
dc.relation | Wang, M., Thomas, N., & Jin, H. (2017). Cross-kingdom
rna trafficking and environmental RNAi for powerful
innovative pre-and post-harvest plant protection. Current
Opinion in Plant Biology, 38, 133-141. doi:10.1016/j.
pbi.2017.05.003. | |
dc.relation | Wang, M., Weiberg, A., Lin, F.-M., Thomma, B. P., Huang,
H.-D., & Jin, H. (2016). Bidirectional cross-kingdom
RNAi and fungal uptake of external RNAs confer
plant protection. Nature Plants, 2, 1-10. doi:10.1038/
nplants.2016.151. | |
dc.relation | Weller, D. M., Raaijmakers, J. M., Gardener, B. B., &
Thomashow, L. S. (2002). Microbial populations
responsible for specific soil suppressiveness to plant
pathogens. Annual Review of Phytopathology, 40, 309-348.
doi:10.1146/annurev.phyto.40.030402.110010. | |
dc.relation | Whitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998).
Prokaryotes: The unseen majority. Proceedings of the
National Academy of Sciences, 95(12), 6578-6583. | |
dc.relation | Wilson, D. (1995). Endophyte: The evolution of a term, and
clarification of its use and definition. Oikos, 73(2), 274-
276. doi:10.2307/3545919. | |
dc.relation | Winterowd, J., & Sandford, P. (1995). Chitin and chitosan.
En A. M. Stephen (Ed.), Food polysaccharides and their
applications (pp. 441-462) Nueva York, EE. UU.: Marcel
Dekker. | |
dc.relation | Yamada, A., Shibuya, N., Kodama, O., & Akatsuka, T. (1993).
Induction of phytoalexin formation in suspensioncultured rice cells by N-Acetyl-chitooligosaccharides.
Bioscience, Biotechnology, and Biochemistry, 57(1), 405-
409. doi:10.1271/bbb.57.405. | |
dc.relation | Yang, J., Kloepper, J. W., & Ryu, C.-M. (2009). Rhizosphere
bacteria help plants tolerate abiotic stress. Trends in Plant
Science, 14(4), 1-4. doi:10.1016/j.tplants.2008.10.004 | |
dc.relation | Yin, H., Zhao, X., & Du, Y. (2010). Oligochitosan: A plant
diseases vaccine—A review. Carbohydrate Polymers, 82(1),
1-8. doi:10.1016/j.carbpol.2010.03.066. | |
dc.relation | Yu, X., Ai, C., Xin, L., & Zhou, G. (2011). The siderophoreproducing bacterium, Bacillus subtilis CAS15, has a
biocontrol effect on Fusarium wilt and promotes the
growth of pepper. European Journal of Soil Biology, 47,
138-145. doi:10.1016/j.ejsobi.2010.11.001. | |
dc.relation | Zhang, J., Bruton, B., Howell, C., & Miller, M. (1999).
Potential of Trichoderma virens for biocontrol of root
rot and vine decline in Cucumis melo L. caused by
Monoporascus cannonballus. Subtropical Plant Science, 51,
29-37. | |
dc.relation | Zhu, Z., Zhang, B., Chen, B., Cai, Q., & Lin, W. (2016).
Biosurfactant production by marine-originated bacteria
Bacillus subtilis and its application for crude oil removal.
Water, Air, and Soil Pollution, 227(9), 328. doi:10.1007/
s11270-016-3012-y | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | |
dc.title | Nuevas estrategias para el control biológico de fitopatógenos | |