dc.creator | Espinel Correal, Carlos | |
dc.creator | Barrera Cubillos, Gloria Patricia | |
dc.creator | Torres Torres, Lissette Aracelly | |
dc.creator | Gómez Valderrama, Juliana Andrea | |
dc.creator | Cuartas Otalora, Paola Emilia | |
dc.creator | Borrero Echeverry, Felipe | |
dc.creator | Villamizar Rivero, Laura Fernanda | |
dc.date.accessioned | 2018-12-05T16:30:47Z | |
dc.date.accessioned | 2022-10-12T19:04:18Z | |
dc.date.available | 2018-12-05T16:30:47Z | |
dc.date.available | 2022-10-12T19:04:18Z | |
dc.date.created | 2018-12-05T16:30:47Z | |
dc.date.issued | 2018 | |
dc.identifier | 978-958-740-254-4 (e-book) | |
dc.identifier | http://hdl.handle.net/20.500.12324/34159 | |
dc.identifier | reponame:Biblioteca Digital Agropecuaria de Colombia | |
dc.identifier | repourl:https://repository.agrosavia.co | |
dc.identifier | instname:Corporación colombiana de investigación agropecuaria AGROSAVIA | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4110928 | |
dc.description.abstract | Muchos insecticidas de síntesis química se han convertido en un método insostenible para el manejo de insectos plaga, mientras que los bioplaguicidas a base de microorganismos entomopatógenos han emergido en las últimas décadas como una alternativa para la agricultura sostenible. En el presente capítulo se mostrará el uso de entomopatógenos que podrían estar involucrados en el desarrollo de bioinsecticidas de nueva generación. Se mostrarán los avances hechos con el aprovechamiento de microesclerocios como estructuras de resistencia y una forma novedosa de producción y de liberación de propágulos en el campo. Se mencionarán las ventajas y el camino por recorrer al utilizar la estrategia de silenciamiento génico que aprovecha el desarrollo de las ómicas como nuevas tecnologías en biología molecular. De igual forma, se abordará otra estrategia promisoria, que es el uso de metabolitos como potenciadores de la actividad biocontroladora, como toxinas, quitinasas o de proteínas derivadas de baculovirus. La estrategia de combinación de microorganismos que aprovechan eventos de sinergismo, adición o de coinfección es la que lleva más tiempo de uso, sin embargo, aún falta por conocer mayores detalles al respecto y, por ende, sigue teniendo un gran potencial si se aprovechan todos los atributos que pueden tener los microorganismos evaluados. | |
dc.language | spa | |
dc.publisher | Corporación colombiana de investigación agropecuaria - AGROSAVIA | |
dc.relation | 33519 ; Control biológico de fitopatógenos, insectos y ácaros: Aplicaciones y perspectivas V. 2. | |
dc.relation | 922 | |
dc.relation | 949 | |
dc.relation | Ali, K., Wakil, W., Zia, K., & Sahi, S. T. (2015). Control
of Earias vittella (Lepidoptera: Noctuidae) by Beauveria
bassiana along with Bacillus thuringiensis. International
Journal of Agriculture & Biology, 17(4), 773-778.
doi:10.17957/IJAB/14.0009. | |
dc.relation | Arakane, Y., Specht, C. A., Kramer, K. J., Muthukrishnan,
S., & Beeman, R. W. (2008). Chitin synthases are
required for survival, fecundity and egg hatch in the red
flour beetle, Tribolium castaneum. Insect Biochemistry
and Molecular Biology, 38(10), 959-962. doi:10.1016/j.
ibmb.2008.07.006. | |
dc.relation | Arora, N., Ahmad, T., Rajagopal, R., & Bhatnagar, R. K.
(2003). A constitutively expressed 36kDa exochitinase
from Bacillus thuringiensis HD-1. Biochemical and
Biophysical Research Communications, 307(6), 620-625.
doi:10.1016/S0006-291X(03)01228-2. | |
dc.relation | Barrios-González, J. (2012). Solid-state fermentation:
physiology of solid medium, its molecular basis and
applications. Process Biochemistry, 47(2), 175-185.
doi:10.1016/j.procbio.2011.11.016. | |
dc.relation | Barrios-González, J., & Mejía, A. (1996). Production of
secondary metabolites by solid-state fermentation.
Biotechnology Annual Review, 2, 85-121. doi:10.1016/
S1387-2656(08)70007-3 | |
dc.relation | Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R.,
Feldmann, P., Ilagan, O., … Pleau, M. (2007). Control of
coleopteran insect pests through rna interference. Nature
Biotechnology, 25(11), 1322-1326. doi:10.1038/nbt1359. | |
dc.relation | Behle, R. W., & Jackson, M. A. (2014). Effect of fermentation
media on the production, efficacy, and storage stability
of Metarhizium brunneum microsclerotia formulated
as a prototype granule. Journal of Economic Entomology,
107(2), 582-590. | |
dc.relation | Behle, R. W., Jackson, M. A., & Flor-Weiler, L. B. (2013).
Efficacy of a granular formulation containing Metarhizium
brunneum F52 (Hypocreales: Clavicipitaceae)
microsclerotia against nymphs of Ixodes scapularis (Acari:
Ixoididae). Journal of Economic Entomology, 106(1), 57-63. | |
dc.relation | Behle, R. W., Richmond, D. S., Jackson, M. A., & Dunlap,
C. A. (2015). Evaluation of Metarhizium brunneum F52
(Hypocreales: Clavicipitaceae) for control of Japanese beetle larvae in turfgrass. Journal of Economic Entomology,
108(4), 1587-1595. | |
dc.relation | Biedma, M. E., Salvador, R., Ferrelli, M. L., Sciocco-Cap, A., &
Romanowski, V. (2015). Effect of the interaction between
Anticarsia gemmatalis multiple nucleopolyhedrovirus
and Epinotia aporema granulovirus, on A. gemmatalis
(Lepidoptera: Noctuidae) larvae. Biological Control, 91,
17-21. doi:10.1016/j.biocontrol.2015.07.006. | |
dc.relation | Bilgo, E., Lovett, B., Fang, W., Bende, N., King, G. F., Diabate,
A., & St. Leger, R. J. (2017). Improved efficacy of an
arthropod toxin expressing fungus against insecticideresistant malaria-vector mosquitoes. Scientific Reports, 7,
3433. doi:10.1038/s41598-017-03399-0. | |
dc.relation | Bolognesi, R., Ramaseshadri, P., Anderson, J., Bachman,
P., Clinton, W., Flannagan, R., … Moar, W. (2012).
Characterizing the mechanism of action of doublestranded rna activity against western corn rootworm
(Diabrotica virgifera LeConte). Plos One, 7(10), e47534.
doi:10.1371/journal.pone.0047534. | |
dc.relation | Campbell, R. (1987). Ecología microbiana. México D. F.,
México: Limusa | |
dc.relation | Carthew, R. W., & Sontheimer, E. J. (2009). Origins and
mechanisms of miRNAs and siRNAs. Cell, 136(4), 642-
655. doi:10.1016/j.cell.2009.01.035. | |
dc.relation | Clarkson, J. M., & Charnley, A. K. (1996). New insights into
the mechanisms of fungal pathogenesis in insects. Trends
in Microbiology, 4(5), 197-203. | |
dc.relation | Corsaro, B. G., Gijzen, M., Wang, P., & Granados, R. R. (1993).
Baculovirus enhancing proteins as determinants of viral
pathogenesis. En N. E. Beckage, S. N. Thomson, & B. A.
Federici (Eds.), Parasites and Pathogens of Insects. (Vol. 2:
Pathogens, pp. 127-145). Nueva York, EE. UU.: Academic
Press. | |
dc.relation | Cory, J. S., Hirst, M. L., Williams, T., Hails, R. S., Goulson,
D., Green, B. M., … Bishop, D. H. L. (1994). Field trial
of a genetically improved baculovirus insecticide. Nature,
370, 138-140. doi:10.1038/370138a0. | |
dc.relation | Cuartas, P., & Villamizar, L. (2011). Interacciones de los virus
entomopatógenos y su efecto sobre la actividad biológica.
Revista Facultad de Ciencias Básicas, 7(2), 220-239. | |
dc.relation | Cuartas, P. E. (2014). Potenciación de la actividad insecticida
de un aislamiento colombiano de nucleopoliedrovirus de
Spodoptera frugiperda ( J.E. Smith, 1797) (Lepidoptera:
Noctuidae) mediante la coinfección con granulovirus (tesis
de doctorado). Universidad Nacional de Colombia,
Bogotá, Colombia. | |
dc.relation | Cheng, X. W., & Lynn, D. E. (2009). Baculovirus interactions
in vitro and in vivo. Advances in Applied Microbiology, 68,
217-239. | |
dc.relation | DaPalma, T., Doonan, B., Trager, N., & Kasman, L. (2010).
A systematic approach to virus-virus interactions. Virus
Research, 149(1), 1-9. doi:10.1016/j.virusres.2010.01.002. | |
dc.relation | De Andrade, E. C., & Hunter, W. B. (2016). rna interference
– natural gene-based technology for highly specific
pest control (HiSPeC). En I. Y. Abdurakhmonov
(Ed.), rna Interference, InTech. Recuperado de https://
www.intechopen.com/books/rna-interference/rnainterference-natural-gene-based-technology-for-highlyspecific-pest-control-hispec-. doi:10.5772/61612. | |
dc.relation | De Dianous, S., Hoarau, F., & Rochat, H. (1987). Reexamination of the specificity of the scorpion Androctonus
australis hector insect toxin towards arthropods. Toxicon,
25(4), 411-417. doi:10.1016/0041-0101(87)90074-2. | |
dc.relation | Dos Santos, M. M., Da Rosa, A. S., Dal'Boit, S., Mitchell,
D. A., & Krieger, N. (2004). Thermal denaturation: is
solid-state fermentation really a good technology for the
production of enzymes? Bioresource Technology, 93(3),
261-268. | |
dc.relation | Down, R. E., Fitches, E. C., Wiles, D. P., Corti, P., Bell, H.
A., Gatehouse, J. A., & Edwards, J. P. (2006). Insecticidal
spider venom toxin fused to snowdrop lectin is toxic to
the peach-potato aphid, Myzus persicae (Hemiptera:
Aphididae) and the rice brown planthopper, Nilaparvata
lugens (Hemiptera: Delphacidae). Pest Management
Science, 62(1), 77-85. doi:10.1002/ps.1119. | |
dc.relation | Endoh, T., & Ohtsuki, T. (2009). Cellular siRNA delivery
using cell-penetrating peptides modified for endosomal
escape. Advanced Drug Delivery Reviews, 61(9), 704-709.
doi:10.1016/j.addr.2009.04.005. | |
dc.relation | Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver,
S. E., & Mello, C. C. (1998). Potent and specific genetic
interference by double-stranded rna in Caenorhabditis
elegans. Nature, 391(6669), 806-811. doi:10.1038/35888 | |
dc.relation | Fire, A. Z. (2007). Gene silencing by double-stranded rna
(Nobel Lecture).Angewandte Chemie International Edition,
46(37), 6966-6984. doi:10.1002/anie.200701979. | |
dc.relation | Friesen, P. D., & Nissen, M. S. (1990). Gene organization
and transcription of ted, a lepidopteran retrotransposon
integrated within the baculovirus genome. Molecular and
Cellular Biology, 10(6), 3067-3077. | |
dc.relation | Garbutt, J. S., Bellés, X., Richards, E. H., & Reynolds, S. E.
(2013). Persistence of double-stranded RNA in insect
hemolymph as a potential determiner of rna interference
success: evidence from Manduca sexta and Blattella germanica. Journal of Insect Physiology, 59(2), 171-178.
doi:10.1016/j.jinsphys.2012.05.013. | |
dc.relation | Gillespie, A. T., & Claydon, N. (1989). The use of
entomogenous fungi for pest control and the role of
toxins in pathogenesis. Pest Management Science, 27(2),
203-215. | |
dc.relation | Goble, T. A., Gardescu, S., Fisher, J. J., Jackson, M. A., &
Hajek, A. E. (2016). Conidial production, persistence
and pathogenicity of hydromulch formulations of
Metarhizium brunneum F52 microsclerotia under forest
conditions. Biological Control, 95, 83-93. doi:10.1016/j.
biocontrol.2016.01.003. | |
dc.relation | Gordon, K. H., & Waterhouse, P. M. (2007). RNAi for
insect-proof plants. Nature Biotechnology, 25(11),
1231-1232. | |
dc.relation | Goto, C., Mukawa, S., & Mitsunaga, T. (2015). Two Year
Field Study to Evaluate the Efficacy of Mamestra brassicae
Nucleopolyhedrovirus Combined with Proteins Derived
from Xestia c-nigrum Granulovirus. Viruses, 7(3), 1062-
1078. doi:10.3390/v7031062. | |
dc.relation | Granados, R. R., Fu, Y., Corsaro, B., & Hughes, P. R.
(2001). Enhancement of Bacillus thuringiensis toxicity to
lepidopterous species with the enhancin from Trichoplusia
in granulovirus. Biological Control, 20(2), 153-159.
doi:10.1006/bcon.2000.0891. | |
dc.relation | Guo, H., Fang, J., Wang, J., Zhong, W., & Liu, B. (2007).
Interaction of Xestia c-nigrum granulovirus with peritrophic
matrix and Spodoptera litura nucleopolyhedrovirus in
Spodoptera litura. Journal of Economic Entomology, 100(1),
20-25. doi:10.1603/0022-0493(2007)100. | |
dc.relation | Gurevitz, M., Karbat, I., Cohen, L., Ilan, N., Kahn, R.,
Turkov, M., … Gordon, D. (2007). The insecticidal
potential of scorpion β-toxins. Toxicon, 49(4), 473-489.
doi:10.1016/j.toxicon.2006.11.015. | |
dc.relation | Guzo, D., Rathburn, H., Guthrie, K., & Dougherty, E.
(1992). Viral and host cellular transcription in Autographa
californica nuclear polyhedrosis virus-infected gypsy moth
cell lines. Journal of Virology, 66(5), 2966-2972 | |
dc.relation | Hajos, J., Vermunt, A., Zuidema, D., Kulcsar, P., Varjas,
L., De Kort, C., … Vlak, J. (1999). Dissecting insect
development: baculovirus-mediated gene silencing
in insects. Insect Molecular Biology, 8(4), 539-544.
doi:10.1046/j.1365-2583.1999.00150.x. | |
dc.relation | Hakim, R. S., Baldwin, K., & Smagghe, G. (2010). Regulation
of midgut growth, development, and metamorphosis.
Annual Review of Entomology, 55, 593-608. doi:10.1146/
annurev-ento-112408-085450. | |
dc.relation | Harrison, R. L., & Bonning, B. C. (2001). Use of proteases to
improve the insecticidal activity of baculoviruses.Biological
Control, 20(3), 199-209. doi:10.1006/bcon.2000.0899. | |
dc.relation | Hayakawa, T., Ko, R., Okano, K., Seong, S.-I., Goto, C.,
& Maeda, S. (1999). Sequence analysis of the Xestia
c-nigrum granulovirus genome. Virology, 262(2), 277-297.
doi:10.1006/viro.1999.9894. | |
dc.relation | Hayakawa, T., Shimojo, E., Mori, M., Kaido, M., Furusawa, I.,
Miyata, S., & Granados, R. (2000). Enhancement of baculovirus
infection in Spodoptera exigua (Lepidoptera: Noctuidae)
larvae with Autographa californica nucleopolyhedrovirus
or Nicotiana tabacum engineered with a granulovirus enhancin
gene. Applied Entomology and Zoology, 35(1), 163-170 | |
dc.relation | Herrera-Estrella, A., & Chet, I. (1999). Chitinases in
biological control. EXS, 87, 171-184. doi:10.1016/S0144-
8617(00)00168-5. | |
dc.relation | Hoover, K., Humphries, M. A., Gendron, A. R., & Slavicek,
J. M. (2010). Impact of viral enhancin genes on potency
of Lymantria dispar multiple nucleopolyhedrovirus in L.
dispar following disruption of the peritrophic matrix.
Journal of Invertebrate Pathology, 104(2), 150-152.
doi:10.1016/j.jip.2010.02.008. | |
dc.relation | Hossain, M., Shimizu, S., Matsuki, M., Imamura, M.,
Sakurai, S., & Iwami, M. (2008). Expression of
20-hydroxyecdysone-induced genes in the silkworm
brain and their functional analysis in post-embryonic
development. Insect Biochemistry and Molecular Biology,
38(11), 1001-1007 | |
dc.relation | Hubbard, M., Hynes, R. K., Erlandson, M., & Bailey, K. L.
(2014). The biochemistry behind biopesticide efficacy.
Sustainable Chemical Processes, 2, 18. doi:10.1186/s40508-
014-0018-x. | |
dc.relation | Hukuhara, T., & Wijonarko, A. (2001). Enhanced fusion of a
nucleopolyhedrovirus with cultured cells by a virus enhancing
factor from an entomopoxvirus. Journal of Invertebrate
Pathology, 77(1), 62-67. doi:10.1006/jipa.2000.4991. | |
dc.relation | Hukuhara, T., Wijonarko, A., Hosokawa, Y., & Iwano, H.
(2003). Enhanced infection of an entomopoxvirus in
larvae of the armyworm, Pseudaletia separata (Lepidoptera:
Noctuidae), by a granulovirus. Applied Entomology and
Zoology, 38(2), 255-259. | |
dc.relation | International Committee on Taxonomy of Viruses (ictv).
(2016). Virus taxonomy: 2016 Release. Recuperado de
https://talk.ictvonline.org/taxonomy | |
dc.relation | Ivashuta, S., Zhang, Y., Wiggins, B. E., Ramaseshadri, P.,
Segers, G. C., Johnson, S., … Bolognesi, R. (2015).
Environmental RNAi in herbivorous insects. RNA, 21(5),
840-850. doi:10.1261/rna.048116.114.2. | |
dc.relation | Jackson, M. A., & Jaronski, S. T. (2009). Production of
microsclerotia of the fungal entomopathogen Metarhizium
anisopliae and their potential for use as a biocontrol agent
for soil-inhabiting insects. Mycological Research, 113(Pt 8),
842-850. | |
dc.relation | Jackson, M. A., & Jaronski, S. T. (2012). Development of
pilot-scale fermentation and stabilization processes for
the production of microsclerotia of the entomopathogenic
fungus Metarhizium brunneum strain F52. Biocontrol Science
and Technology, 22(8), 915-930. | |
dc.relation | Jaronski, S. T., & Jackson, M. A. (2008). Efficacy of
Metarhizium anisopliae microsclerotial granules. Biocontrol
Science and Technology, 18(8), 849-863. | |
dc.relation | Jehle, J., Fritsch, E., Huber, J., & Backhaus, H. (2003). Intraspecific and inter-specific recombination of tortricidspecific granuloviruses during co-infection in insect larvae.
Archives of Virology, 148(7), 1317-1333. doi:10.1007/
s00705-003-0104-y | |
dc.relation | Kasman, L. M. (2010). Virus/virus interactions. Recuperado
de http://virusvirus.net/vvi.php. | |
dc.relation | Khachatourians, G. (1991). Physiology and genetics of
entomopathogenic fungi. En D. Arora, I. Ajello, & K.
Mukerji (Eds.), Handbook of Applied Mycology. (Vol.
2: Humans, Animals and Insects, pp. 613-663). Nueva
York, EE. UU.: M. Dekker | |
dc.relation | Khachatourians, G. (1996). Biochemistry and molecular
biology of entomopathogenic fungi. En D. Howard, &
J. Miller (Eds.), Human and animal relationships (The
Mycota, Vol. vi, pp. 331-363). Berlín, Alemania: Springer | |
dc.relation | Kiyatkin, N. I., Kulikovskaya, I. M., Grishin, E. V., Beadle,
D. J., & King, L. A. (1995). Functional characterization
of black widow spider neurotoxins synthesised in insect
cells. European Journal of Biochemistry, 230(3), 854-859. | |
dc.relation | Kobori, N. N., Mascarin, G. M., Jackson, M. A., & Schisler,
D. A. (2015). Liquid culture production of microsclerotia
and submerged conidia by Trichoderma harzianum active
against damping-off disease caused by Rhizoctonia solani.
Fungal Biology, 119(4), 179-190. | |
dc.relation | Kondo, A., & Maeda, S. (1991). Host range expansion by
recombination of the baculoviruses Bombyx mori nuclear
polyhedrosis virus and Autographa californica nuclear
polyhedrosis virus. Journal of Virology, 65(7), 3625-3632 | |
dc.relation | Kontogiannatos, D., Swevers, L., Maenaka, K., Park,
E. Y., Iatrou, K., & Kourti, A. (2013). Functional
characterization of a juvenile hormone esterase related
gene in the moth Sesamia nonagrioides through rna
interference. Plos One, 8(9), e73834. doi:10.1371/journal.
pone.0073834. | |
dc.relation | Kourti, A., Swevers, L., & Kontogiannatos, D. (2017).
In search of new methodologies for efficient insect
pest control: “The RNAi ‘Movement’”. En V. Shields
(Ed.), Biological control of pest and vector insects, InTech.
Recuperado de https://www.intechopen.com/books/
biological-control-of-pest-and-vector-insects/in-searchof-new-methodologies-for-efficient-insect-pest-controlthe-rnai-movement-. doi:10.5772/66633 | |
dc.relation | Kramer, K. J., & Muthukrishnan, S. (1997). Insect chitinases:
molecular biology and potential use as biopesticides.Insect
Biochemistry and Molecular Biology, 27(11), 887-900. | |
dc.relation | Kupferschmidt, K. (2013). A lethal dose of rna. Science,
341(6147), 732-733. | |
dc.relation | Lauzon, H. A., Jamieson, P. B., Krell, P. J., & Arif, B. M.
(2005). Gene organization and sequencing of the
Choristoneura fumiferana defective nucleopolyhedrovirus
genome. Journal of General Virology, 86(Pt 4), 945-961.
Lecuona, R., & Alves, S. (1988). Efficiency of Beauveria
bassiana (Bals.) Vuill., B. brongniartii (Sacc.) Petch. and granulose virus on Diatraea saccharalis (F., 1794) at
different temperatures. Journal of Applied Entomology,
105(1-5), 223-228. | |
dc.relation | Lednev, G., Kryukov, V. Y., Khodyrev, V., Levchenko, M.,
Duisembekov, B., Sagitov, A., & Glupov, V. (2008).
Dynamics of mortality of the migratory locust under
synchronous infection with entomopathogenic fungi
(Beauveria bassiana, Metarhizium anisopliae) and bacteria
Pseudomonas sp. Contemporary Problems of Ecology, 1(2),
210-213. | |
dc.relation | Lingg, A., & Donaldson, M. (1981). Biotic and abiotic factors
affecting stability of Beauveria bassiana conidia in soil.
Journal of Invertebrate Pathology, 38(2), 191-200. | |
dc.relation | Liu, M., Cai, Q., Liu, H., Zhang, B., Yan, J., & Yuan, Z.
(2002). Chitinolytic activities in Bacillus thuringiensis
and their synergistic effects on larvicidal activity. Journal
of Applied Microbiology, 93(3), 374-379. doi:10.1046/
j.1365-2672.2002.01693.x. | |
dc.relation | López-Ferber, M., Simón, O., Williams, T., & Caballero, P.
(2003). Defective or effective? Mutualistic interactions
between virus genotypes. Proceedings of the Royal Society
of London B: Biological Sciences, 270(1530), 2249-2255.
doi:10.1098/rspb.2003.2498. | |
dc.relation | Luo, K., & Pang, Y. (2006). Spodoptera litura multicapsid
nucleopolyhedrovirus inhibits Microplitis bicoloratus
polydnavirus-induced host granulocytes apoptosis.
Journal of Insect Physiology, 52(8), 795-806. | |
dc.relation | Ma, X.-M., Liu, X.-X., Ning, X., Zhang, B., Han, F., Guan,
X.-M., …. Zhang, Q.-W. (2008). Effects of Bacillus
thuringiensis toxin Cry1Ac and Beauveria bassiana on
Asiatic corn borer (Lepidoptera: Crambidae). Journal of
Invertebrate Pathology, 99(2), 123-128. | |
dc.relation | Maeda, S., Volrath, S. L., Hanzlik, T. N., Harper, S. A.,
Majima, K., Maddox, D. W., … Fowler, E. (1991).
Insecticidal effects of an insect-specific neurotoxin
expressed by a recombinant baculovirus. Virology, 184(2),
777-780. | |
dc.relation | Mamta, B., & Rajam, M. (2017). RNAi technology: a new
platform for crop pest control. Physiology and Molecular
Biology of Plants, 23(3), 487-501. doi:10.1007/s12298-
017-0443-x | |
dc.relation | Manpreet, S., Sawraj, S., Sachin, D., Pankaj, S., & Banerjee,
U. (2005). Influence of process parameters on the
production of metabolites in solid-state fermentation.
Malaysian Journal of Microbiology, 1(2), 1-9. | |
dc.relation | Mantzoukas, S., Milonas, P., Kontodimas, D., & Angelopoulos,
K. (2013). Interaction between the entomopathogenic
bacterium Bacillus thuringiensis subsp. kurstaki and
two entomopathogenic fungi in bio-control of Sesamia
nonagrioides (Lefebvre) (Lepidoptera: Noctuidae). Annals
of Microbiology, 63(3), 1083-1091. | |
dc.relation | Mao, Y.-B., Cai, W.-J., Wang, J.-W., Hong, G.-J., Tao, X.-Y.,
Wang, L.-J., … Chen, X.-Y. (2007). Silencing a cotton
bollworm P450 monooxygenase gene by plant-mediated
RNAi impairs larval tolerance of gossypol. Nature
Biotechnology, 25(11), 1307-1313. doi:10.1038/nbt1352. | |
dc.relation | Maurel, V. B., Orliaca, O., & Christen, P. (2003). Sensors
and measurements in solid state fermentation: a review.
Process Biochemistry, 38(6), 881-889. | |
dc.relation | Mazid, S. (2011). A review on the use of biopesticides in
insect pest management. International Journal of Science
and Advanced Technology, 1(7), 169-178. doi:10.1007/
s10886-005-4244-2. | |
dc.relation | McClintock, J. T., & Dougherty, E. M. (1987). Superinfection
of baculovirus-infected gypsy moth cells with the nuclear
polyhedrosis viruses of Autographa californica and
Lymantria dispar. Virus Research, 7(4), 351-364. | |
dc.relation | Miller, S. C., Brown, S. J., & Tomoyasu, Y. (2008). Larval
RNAi in Drosophila? Development Genes and Evolution,
218(9), 505-510. doi:10.1007/s00427-008-0238-8. | |
dc.relation | Mukawa, S., & Goto, C. (2007). Enhancement of
nucleopolyhedrovirus infectivity against Mamestra
brassicae (Lepidoptera: Noctuidae) by proteins derived
from granulovirus and a fluorescent brightener.
Journal of Economic Entomology, 100(4), 1075-1083.
doi:10.1603/0022-0493(2007)100. | |
dc.relation | Mukawa, S., & Goto, C. (2010). Mamestra brassicae
nucleopolyhedrovirus infection and enhancing effect of
proteins derived from Xestia c-nigrum granulovirus in
larvae of Mamestra brassicae and Helicoverpa armigera
(Lepidoptera: Noctuidae) on cabbage. Journal of Economic
Entomology, 103(2), 257-264. doi:10.1603/EC09211. | |
dc.relation | Mwamburi, L., Laing, M., & Miller, R. (2009). Interaction
between Beauveria bassiana and Bacillus thuringiensis var.
israelensis for the control of house fly larvae and adults in
poultry houses. Poultry Science, 88(11), 2307-2314. | |
dc.relation | Nakasu, E. Y. T., Karamaouna, F., Partsinevelos, G. K., Abd
El Halim, H. M., Fitches, E. C., Pyati, P., … Edwards,
M. G. (2016). Sublethal effects of the insecticidal fusion
protein ω-ACTX-Hv1a/GNA on the parasitoid Eulophus
pennicornis via its host Lacanobia oleracea. Pest Management
Science, 72(3), 585-590. doi:10.1002/ps.4030. | |
dc.relation | Ortiz-Urquiza, A., Luo, Z., & Keyhani, N. O. (2015).
Improving mycoinsecticides for insect biological control.
Applied Microbiology and Biotechnology, 99(3), 1057-
1068. doi:10.1007/s00253-014-6270-x. | |
dc.relation | Ortiz, E., & Possani, L. D. (2015). The unfulfilled promises of
scorpion insectotoxins. Journal of Venomous Animals and
Toxins including Tropical Diseases, 21, 16. doi:10.1186/
s40409-015-0019-6. | |
dc.relation | Osman, G. H., Assem, S. K., Alreedy, R. M., El-Ghareeb,
D. K., Basry, M. A., Rastogi, A., & Kalaji, H. M. (2015).
Development of insect resistant maize plants expressing
a chitinase gene from the cotton leaf worm, Spodoptera
littoralis. Scientific Reports, 5, 18067. doi:10.1038/
srep18067. | |
dc.relation | Palli, S., Caputo, G., Sohi, S., Brownwright, A., Ladd,
T., Cook, B., … Retnakaran, A. (1996). CfMNPV BlocksAcMNPV-Induced Apoptosis in a Continuous
Midgut Cell Line.Virology, 222(1), 201-213. doi:10.1006/
viro.1996.0411. | |
dc.relation | Palli, S. R. (2014). rna interference in Colorado potato beetle:
steps toward development of dsRNA as a commercial
insecticide. Current Opinion in Insect Science, 6, 1-8. | |
dc.relation | Pauli, G. (2009). Interação de Metarhizium anisopliae
(Metsch.), Beauveria bassiana (Bals.) e vírus da granulose,
principais patógenos de Diatraea saccharalis (Fabr. 1794)
(Lepidoptera: Crambidae) (tesis de maestría). Escola
Superior de Agricultura Luiz de Queiroz, Universidade
de São Paulo, Piracicaba, Brasil. | |
dc.relation | Pelhate, M., & Zlotkin, E. (1982). Actions of insect toxin
and other toxins derived from the venom of the scorpion
Androctonus australis on isolated giant axons of the
cockroach (Periplaneta americana).Journal of Experimental
Biology, 97, 67-77. | |
dc.relation | Peng, G., & Xia, Y. (2014). Expression of scorpion toxin
LqhIT2 increases the virulence of Metarhizium acridum
towards Locusta migratoria manilensis. Journal of Industrial
Microbiology and Biotechnology, 41(11), 1659-1666.
doi:10.1007/s10295-014-1497-1. | |
dc.relation | Peng, G., & Xia, Y. (2015). Integration of an insecticidal
scorpion toxin (BjαIT) gene into Metarhizium acridum
enhances fungal virulence towards Locusta migratoria
manilensis. Pest Management Science, 71(1), 58-64.
doi:10.1002/ps.3762. | |
dc.relation | Perrimon, N., Ni, J., & Perkins, L. (2010). In vivo RNAi:
Today and Tomorrow. Cold Spring Harbor Perspectives
in Biology, 2(8), a003640. doi:10.1101/cshperspect.
a003640. | |
dc.relation | Poprawski, T. J., Robert, P. H., & Maniana, N. K. (1985).
Susceptibility of the onion maggot Delia antiqua
(Diptera: Antomyiidae) to the mycotoxin Destruxin E.
The Canadian Entomologist, 117, 801-802 | |
dc.relation | Prabhakar, A., Krishnaiah, K., Janaun, J., & Bono, A.
(2005). An overview of engineering aspects of solid
state fermentation. Malaysian Journal of Microbiology,
1(2), 10-16 | |
dc.relation | Rahman, M. M., & Gopinathan, K. P. (2003). Analysis of host
specificity of two closely related baculoviruses in permissive
and nonpermissive cell lines. Virus Research, 93(1), 13-23. | |
dc.relation | Rao, R., Fiandra, L., Giordana, B., de Eguileor, M., Congiu,
T., Burlini, N., ... Pennacchio, F. (2004). AcMNPV
ChiA protein disrupts the peritrophic membrane and
alters midgut physiology of Bombyx mori larvae. Insect
Biochemistry and Molecular Biology, 34(11), 1205-1213.
doi:10.1016/j.ibmb.2004.08.002. | |
dc.relation | Ravensberg, W. J. (2011). A roadmap to the successful
development and commercialization of microbial pest control
products for control of arthropods. Dordrecht, Países Bajos:
Springer. | |
dc.relation | Regev, A., Keller, M., Strizhov, N., Sneh, B., Prudovsky, E.,
Chet, I., … Schell, J. (1996). Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial
endochitinase against Spodoptera littoralis larvae. Applied
and Environmental Microbiology, 62(10), 3581-3586. | |
dc.relation | Rohou, A., Nield, J., & Ushkaryov, Y. A. (2007). Insecticidal
toxins from black widow spider venom. Toxicon, 49(4),
531-549. doi:10.1016/j.toxicon.2006.11.021. | |
dc.relation | Rothstein, S. J., DiMaio, J., Strand, M., & Rice, D. (1987).
Stable and heritable inhibition of the expression of
nopaline synthase in tobacco expressing antisense rna.
Proceedings of the National Academy of Sciences, 84(23),
8439-8443. doi:10.1073/pnas.84.23.8439. | |
dc.relation | Scott, J. G., Michel, K., Bartholomay, L. C., Siegfried, B. D.,
Hunter, W. B., Smagghe, G., … Douglas, A. E. (2013).
Towards the elements of successful insect RNAi. Journal
of Insect Physiology, 59(12), 1212-1221. | |
dc.relation | Schultz, K. L., & Friesen, P. D. (2009). Baculovirus dna
replication-specific expression factors trigger apoptosis
and shutoff of host protein synthesis during infection.
Journal of Virology, 83(21), 11123-11132. | |
dc.relation | Shapiro, M. (2000). Effect of two granulosis viruses on the
activity of the gypsy moth (Lepidoptera: Lymantriidae)
nuclear polyhedrosis virus.Journal of Economic Entomology,
93(6), 1633-1637. doi:10.1603/0022-0493-93.6.1633. | |
dc.relation | Shapiro, M., Preisler, H. K., & Robertson, J. L. (1987).
Enhancement of baculovirus activity on gypsy moth
(Lepidoptera: Lymantriidae) by chitinase. Journal of
Economic Entomology, 80(6), 1113-1116. | |
dc.relation | Shukla, J. N., Kalsi, M., Sethi, A., Narva, K. E., Fishilevich,
E., Singh, S., … Palli, S. R. (2016). Reduced stability
and intracellular transport of dsRNA contribute to poor
RNAi response in lepidopteran insects. RNA Biology,
13(7), 656-669. doi:10.1080/15476286.2016.1191728. | |
dc.relation | Singh, G., Bhalla, A., Bhatti, J. S., Chandel, S., Rajput, A.,
Abdullah, A., … Kaur, P. (2014). Potential of chitinases
as a biopesticide against agriculturally harmful fungi and
insects. Journal of Microbiology and Biotechnology, 3(1),
27-32. | |
dc.relation | Slavicek, J. M. (2012). Baculovirus enhancins and their role in
viral pathogenicity. En M. Adoga (Ed.), Molecular virology
(pp. 147-168), InTech. doi:10.5772/33285. Recuperado
de https://www.intechopen.com/books/molecularvirology/baculovirus-enhancins-and-their-role-in-viralpathogenicity. | |
dc.relation | Smith, M. E., Henkel, T. W., & Rollins, J. A. (2015). How
many fungi make sclerotia? Fungal Ecology, 13, 211-220. | |
dc.relation | Song, Z., Lin, Y., Du, F., Yin, Y., & Wang, Z. (2017).
Statistical optimisation of process variables and largescale production of Metarhizium rileyi (Ascomycetes:
Hypocreales) microsclerotia in submerged fermentation.
Mycology, 8(1), 39-47. | |
dc.relation | Song, Z., Shen, L., Zhong, Q., Yin, Y. & Wang, Z.
(2016). Liquid culture production of microsclerotia of Purpureocillium lilacinum for use as bionematicide.
Nematology, 18(6), 719-726. | |
dc.relation | Song, Z., Yin, Y., Jiang, S., Liu, J., Chen, H., & Wang,
Z. (2013). Comparative transcriptome analysis of
microsclerotia development in Nomuraea rileyi. BMC
Genomics, 14, 411. doi:10.1186/1471-2164-14-411. | |
dc.relation | Sparks, W. O., Bartholomay, L., & Bonning, B. (2008).
Insect immunity to viruses. En N.E. Beckage (Ed.),
Insect Immunology (pp. 209-242). San Diego, EE. UU.:
Academic Press. | |
dc.relation | Sun, X., Wang, H., Sun, X., Chen, X., Peng, C., Pan, D.,
… Hu, Z. (2004). Biological activity and field efficacy
of a genetically modified Helicoverpa armigera singlenucleocapsid nucleopolyhedrovirus expressing an insectselective toxin from a chimeric promoter.Biological Control,
29(1), 124-137. doi:10.1016/S1049-9644(03)00117-8. | |
dc.relation | Tenllado, F., Martínez-García, B., Vargas, M., & Díaz-Ruíz, J.
R. (2003). Crude extracts of bacterially expressed dsRNA
can be used to protect plants against virus infections.
BMC Biotechnology, 3, 3. doi:10.1186/1472-6750-3-3. | |
dc.relation | Thakur, N., Mundey, J. K., & Upadhyay, S. K. (2016). RNAi
- Implications in entomological research and pest control.
En I. Y. Abdurakhmonov (Ed.), rna Interference, InTech.
Recuperado de https://www.intechopen.com/books/rnainterference/rnai-implications-in-entomological-researchand-pest-control. doi:10.5772/61814. | |
dc.relation | Thamthiankul, S., Moar, W., Miller, M., & Panbangred,
W. (2004). Improving the insecticidal activity of
Bacillus thuringiensis subsp. aizawai against Spodoptera
exigua by chromosomal expression of a chitinase gene.
Applied Microbiology and Biotechnology, 65(2), 183-192.
doi:10.1007/s00253-004-1606-6. | |
dc.relation | Timmons, L., Court, D. L., & Fire, A. (2001). Ingestion of
bacterially expressed dsRNAs can produce specific and
potent genetic interference in Caenorhabditis elegans.
Gene, 263(1-2), 103-112. doi:10.1016/S0378-1119(00)
00579-5. | |
dc.relation | Torres, L., & Cotes, A. (1999). Evaluación de la actividad
biocontroladora de hongos entomopatógenos contra
Premnotrypes vorax (Coleoptera: Curculionidae) mediante
su utilización individual y combinada. Revista Colombiana
de Entomología, 25(3-4), 121-129. | |
dc.relation | Trung, N. P., Fitches, E., & Gatehouse, J. A. (2006). A fusion
protein containing a lepidopteran-specific toxin from the
South Indian red scorpion (Mesobuthus tamulus) and
snowdrop lectin shows oral toxicity to target insects.
BMC Biotechnology, 6, 18. doi:10.1186/1472-6750-6-18. | |
dc.relation | Uma Maheswara Rao, C., Uma Devi, K., & Akbar Ali
Khan, P. (2006). Effect of combination treatment with
entomopathogenic fungi Beauveria bassiana and Nomuraea
rileyi (Hypocreales) on Spodoptera litura (Lepidoptera:
Noctuidaeae). Biocontrol Science and Technology, 16(3),
221-232. | |
dc.relation | Waner, J. L. (1994). Mixed viral infections: detection and
management. Clinical Microbiology Reviews, 7(2), 143-
151. doi:10.1128/CMR.7.2.143. | |
dc.relation | Wang, K., Peng, Y., Pu, J., Fu, W., Wang, J., & Han, Z.
(2016). Variation in RNAi efficacy among insect species
is attributable to dsRNA degradation in vivo. Insect
Biochemistry and Molecular Biology, 77, 1-9. doi:10.1016/j.
ibmb.2016.07.007. | |
dc.relation | Wang, L., Salem, T. Z., Lynn, D. E., & Cheng, X.-W. (2008).
Slow cell infection, inefficient primary infection and
inability to replicate in the fat body determine the host
range of Thysanoplusia orichalcea nucleopolyhedrovirus.
Journal of General Virology, 89(Pt 6), 1402-1410. | |
dc.relation | Washburn, J. O., Haas-Stapleton, E. J., Tan, F. F., Beckage, N.
E., & Volkman, L. E. (2000). Co-infection of Manduca
sexta larvae with polydnavirus from Cotesia congregata
increases susceptibility to fatal infection by Autographa
californica M nucleopolyhedrovirus. Journal of Insect
Physiology, 46(2), 179-190. | |
dc.relation | Whyard, S., Singh, A. D., & Wong, S. (2009). Ingested
double-stranded RNAs can act as species-specific
insecticides. Insect Biochemistry and Molecular Biology,
39(11), 824-832. doi:10.1016/j.ibmb.2009.09.007. | |
dc.relation | Willetts, H. (1971). The survival of fungal sclerotia under
adverse environmental conditions. Biological Reviews,
46(3), 387-407. | |
dc.relation | Wraight, S. P., & Ramos, M. E. (2005). Synergistic interaction
between Beauveria bassiana and Bacillus thuringiensis
tenebrionis-based biopesticides applied against field
populations of Colorado potato beetle larvae. Journal of
Invertebrate Pathology, 90(3), 139-150. | |
dc.relation | Yanase, T., Yasunaga, C., Hara, T., & Kawarabata, T.
(1998). Coinfection of Spodoptera exigua and Spodoptera
frugiperda Cell Lines with the Nuclear Polyhedrosis
Viruses of Autographa californica and Spodoptera exigua.
Intervirology, 41(6), 244-252. doi:10.1159/000024946. | |
dc.relation | Yaroslavtseva, O. N., Dubovskiy, I. M., Khodyrev, V. P.,
Duisembekov, B. A., Kryukov, V. Y., & Glupov, V. V.
(2017). Immunological mechanisms of synergy between
fungus Metarhizium robertsii and bacteria Bacillus
thuringiensis ssp. morrisoni on Colorado potato beetle
larvae. Journal of Insect Physiology, 96, 14-20. | |
dc.relation | Zhang, X., Zhang, J., & Zhu, K. (2010). Chitosan/doublestranded rna nanoparticle-mediated rna interference
to silence chitin synthase genes through larval feeding in
the African malaria mosquito (Anopheles gambiae). Insect
Molecular Biology, 19(5), 683-693. doi:10.1111/j.1365-
2583.2010.01029.x | |
dc.relation | Zhiqiang, A. (2005). Handbook of Industrial Mycology.
Nueva York, EE. UU.: Marcel Dekker | |
dc.relation | Zoog, S. J., Schiller, J. J., Wetter, J. A., Chejanovsky, N., &
Friesen, P. D. (2002). Baculovirus apoptotic suppressor
P49 is a substrate inhibitor of initiator caspases resistant
to P35 in vivo. The EMBO Journal, 21(19), 5130-5140. | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | |
dc.title | Nuevas estrategias para el control biológico de insectos | |