dc.creatorEspinel Correal, Carlos
dc.creatorBarrera Cubillos, Gloria Patricia
dc.creatorTorres Torres, Lissette Aracelly
dc.creatorGómez Valderrama, Juliana Andrea
dc.creatorCuartas Otalora, Paola Emilia
dc.creatorBorrero Echeverry, Felipe
dc.creatorVillamizar Rivero, Laura Fernanda
dc.date.accessioned2018-12-05T16:30:47Z
dc.date.accessioned2022-10-12T19:04:18Z
dc.date.available2018-12-05T16:30:47Z
dc.date.available2022-10-12T19:04:18Z
dc.date.created2018-12-05T16:30:47Z
dc.date.issued2018
dc.identifier978-958-740-254-4 (e-book)
dc.identifierhttp://hdl.handle.net/20.500.12324/34159
dc.identifierreponame:Biblioteca Digital Agropecuaria de Colombia
dc.identifierrepourl:https://repository.agrosavia.co
dc.identifierinstname:Corporación colombiana de investigación agropecuaria AGROSAVIA
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4110928
dc.description.abstractMuchos insecticidas de síntesis química se han convertido en un método insostenible para el manejo de insectos plaga, mientras que los bioplaguicidas a base de microorganismos entomopatógenos han emergido en las últimas décadas como una alternativa para la agricultura sostenible. En el presente capítulo se mostrará el uso de entomopatógenos que podrían estar involucrados en el desarrollo de bioinsecticidas de nueva generación. Se mostrarán los avances hechos con el aprovechamiento de microesclerocios como estructuras de resistencia y una forma novedosa de producción y de liberación de propágulos en el campo. Se mencionarán las ventajas y el camino por recorrer al utilizar la estrategia de silenciamiento génico que aprovecha el desarrollo de las ómicas como nuevas tecnologías en biología molecular. De igual forma, se abordará otra estrategia promisoria, que es el uso de metabolitos como potenciadores de la actividad biocontroladora, como toxinas, quitinasas o de proteínas derivadas de baculovirus. La estrategia de combinación de microorganismos que aprovechan eventos de sinergismo, adición o de coinfección es la que lleva más tiempo de uso, sin embargo, aún falta por conocer mayores detalles al respecto y, por ende, sigue teniendo un gran potencial si se aprovechan todos los atributos que pueden tener los microorganismos evaluados.
dc.languagespa
dc.publisher‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIA
dc.relation33519 ; Control biológico de fitopatógenos, insectos y ácaros: Aplicaciones y perspectivas V. 2.
dc.relation922
dc.relation949
dc.relationAli, K., Wakil, W., Zia, K., & Sahi, S. T. (2015). Control of Earias vittella (Lepidoptera: Noctuidae) by Beauveria bassiana along with Bacillus thuringiensis. International Journal of Agriculture & Biology, 17(4), 773-778. doi:10.17957/IJAB/14.0009.
dc.relationArakane, Y., Specht, C. A., Kramer, K. J., Muthukrishnan, S., & Beeman, R. W. (2008). Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology, 38(10), 959-962. doi:10.1016/j. ibmb.2008.07.006.
dc.relationArora, N., Ahmad, T., Rajagopal, R., & Bhatnagar, R. K. (2003). A constitutively expressed 36kDa exochitinase from Bacillus thuringiensis HD-1. Biochemical and Biophysical Research Communications, 307(6), 620-625. doi:10.1016/S0006-291X(03)01228-2.
dc.relationBarrios-González, J. (2012). Solid-state fermentation: physiology of solid medium, its molecular basis and applications. Process Biochemistry, 47(2), 175-185. doi:10.1016/j.procbio.2011.11.016.
dc.relationBarrios-González, J., & Mejía, A. (1996). Production of secondary metabolites by solid-state fermentation. Biotechnology Annual Review, 2, 85-121. doi:10.1016/ S1387-2656(08)70007-3
dc.relationBaum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., Ilagan, O., … Pleau, M. (2007). Control of coleopteran insect pests through rna interference. Nature Biotechnology, 25(11), 1322-1326. doi:10.1038/nbt1359.
dc.relationBehle, R. W., & Jackson, M. A. (2014). Effect of fermentation media on the production, efficacy, and storage stability of Metarhizium brunneum microsclerotia formulated as a prototype granule. Journal of Economic Entomology, 107(2), 582-590.
dc.relationBehle, R. W., Jackson, M. A., & Flor-Weiler, L. B. (2013). Efficacy of a granular formulation containing Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) microsclerotia against nymphs of Ixodes scapularis (Acari: Ixoididae). Journal of Economic Entomology, 106(1), 57-63.
dc.relationBehle, R. W., Richmond, D. S., Jackson, M. A., & Dunlap, C. A. (2015). Evaluation of Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) for control of Japanese beetle larvae in turfgrass. Journal of Economic Entomology, 108(4), 1587-1595.
dc.relationBiedma, M. E., Salvador, R., Ferrelli, M. L., Sciocco-Cap, A., & Romanowski, V. (2015). Effect of the interaction between Anticarsia gemmatalis multiple nucleopolyhedrovirus and Epinotia aporema granulovirus, on A. gemmatalis (Lepidoptera: Noctuidae) larvae. Biological Control, 91, 17-21. doi:10.1016/j.biocontrol.2015.07.006.
dc.relationBilgo, E., Lovett, B., Fang, W., Bende, N., King, G. F., Diabate, A., & St. Leger, R. J. (2017). Improved efficacy of an arthropod toxin expressing fungus against insecticideresistant malaria-vector mosquitoes. Scientific Reports, 7, 3433. doi:10.1038/s41598-017-03399-0.
dc.relationBolognesi, R., Ramaseshadri, P., Anderson, J., Bachman, P., Clinton, W., Flannagan, R., … Moar, W. (2012). Characterizing the mechanism of action of doublestranded rna activity against western corn rootworm (Diabrotica virgifera LeConte). Plos One, 7(10), e47534. doi:10.1371/journal.pone.0047534.
dc.relationCampbell, R. (1987). Ecología microbiana. México D. F., México: Limusa
dc.relationCarthew, R. W., & Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136(4), 642- 655. doi:10.1016/j.cell.2009.01.035.
dc.relationClarkson, J. M., & Charnley, A. K. (1996). New insights into the mechanisms of fungal pathogenesis in insects. Trends in Microbiology, 4(5), 197-203.
dc.relationCorsaro, B. G., Gijzen, M., Wang, P., & Granados, R. R. (1993). Baculovirus enhancing proteins as determinants of viral pathogenesis. En N. E. Beckage, S. N. Thomson, & B. A. Federici (Eds.), Parasites and Pathogens of Insects. (Vol. 2: Pathogens, pp. 127-145). Nueva York, EE. UU.: Academic Press.
dc.relationCory, J. S., Hirst, M. L., Williams, T., Hails, R. S., Goulson, D., Green, B. M., … Bishop, D. H. L. (1994). Field trial of a genetically improved baculovirus insecticide. Nature, 370, 138-140. doi:10.1038/370138a0.
dc.relationCuartas, P., & Villamizar, L. (2011). Interacciones de los virus entomopatógenos y su efecto sobre la actividad biológica. Revista Facultad de Ciencias Básicas, 7(2), 220-239.
dc.relationCuartas, P. E. (2014). Potenciación de la actividad insecticida de un aislamiento colombiano de nucleopoliedrovirus de Spodoptera frugiperda ( J.E. Smith, 1797) (Lepidoptera: Noctuidae) mediante la coinfección con granulovirus (tesis de doctorado). Universidad Nacional de Colombia, Bogotá, Colombia.
dc.relationCheng, X. W., & Lynn, D. E. (2009). Baculovirus interactions in vitro and in vivo. Advances in Applied Microbiology, 68, 217-239.
dc.relationDaPalma, T., Doonan, B., Trager, N., & Kasman, L. (2010). A systematic approach to virus-virus interactions. Virus Research, 149(1), 1-9. doi:10.1016/j.virusres.2010.01.002.
dc.relationDe Andrade, E. C., & Hunter, W. B. (2016). rna interference – natural gene-based technology for highly specific pest control (HiSPeC). En I. Y. Abdurakhmonov (Ed.), rna Interference, InTech. Recuperado de https:// www.intechopen.com/books/rna-interference/rnainterference-natural-gene-based-technology-for-highlyspecific-pest-control-hispec-. doi:10.5772/61612.
dc.relationDe Dianous, S., Hoarau, F., & Rochat, H. (1987). Reexamination of the specificity of the scorpion Androctonus australis hector insect toxin towards arthropods. Toxicon, 25(4), 411-417. doi:10.1016/0041-0101(87)90074-2.
dc.relationDos Santos, M. M., Da Rosa, A. S., Dal'Boit, S., Mitchell, D. A., & Krieger, N. (2004). Thermal denaturation: is solid-state fermentation really a good technology for the production of enzymes? Bioresource Technology, 93(3), 261-268.
dc.relationDown, R. E., Fitches, E. C., Wiles, D. P., Corti, P., Bell, H. A., Gatehouse, J. A., & Edwards, J. P. (2006). Insecticidal spider venom toxin fused to snowdrop lectin is toxic to the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae) and the rice brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Pest Management Science, 62(1), 77-85. doi:10.1002/ps.1119.
dc.relationEndoh, T., & Ohtsuki, T. (2009). Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Advanced Drug Delivery Reviews, 61(9), 704-709. doi:10.1016/j.addr.2009.04.005.
dc.relationFire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded rna in Caenorhabditis elegans. Nature, 391(6669), 806-811. doi:10.1038/35888
dc.relationFire, A. Z. (2007). Gene silencing by double-stranded rna (Nobel Lecture).Angewandte Chemie International Edition, 46(37), 6966-6984. doi:10.1002/anie.200701979.
dc.relationFriesen, P. D., & Nissen, M. S. (1990). Gene organization and transcription of ted, a lepidopteran retrotransposon integrated within the baculovirus genome. Molecular and Cellular Biology, 10(6), 3067-3077.
dc.relationGarbutt, J. S., Bellés, X., Richards, E. H., & Reynolds, S. E. (2013). Persistence of double-stranded RNA in insect hemolymph as a potential determiner of rna interference success: evidence from Manduca sexta and Blattella germanica. Journal of Insect Physiology, 59(2), 171-178. doi:10.1016/j.jinsphys.2012.05.013.
dc.relationGillespie, A. T., & Claydon, N. (1989). The use of entomogenous fungi for pest control and the role of toxins in pathogenesis. Pest Management Science, 27(2), 203-215.
dc.relationGoble, T. A., Gardescu, S., Fisher, J. J., Jackson, M. A., & Hajek, A. E. (2016). Conidial production, persistence and pathogenicity of hydromulch formulations of Metarhizium brunneum F52 microsclerotia under forest conditions. Biological Control, 95, 83-93. doi:10.1016/j. biocontrol.2016.01.003.
dc.relationGordon, K. H., & Waterhouse, P. M. (2007). RNAi for insect-proof plants. Nature Biotechnology, 25(11), 1231-1232.
dc.relationGoto, C., Mukawa, S., & Mitsunaga, T. (2015). Two Year Field Study to Evaluate the Efficacy of Mamestra brassicae Nucleopolyhedrovirus Combined with Proteins Derived from Xestia c-nigrum Granulovirus. Viruses, 7(3), 1062- 1078. doi:10.3390/v7031062.
dc.relationGranados, R. R., Fu, Y., Corsaro, B., & Hughes, P. R. (2001). Enhancement of Bacillus thuringiensis toxicity to lepidopterous species with the enhancin from Trichoplusia in granulovirus. Biological Control, 20(2), 153-159. doi:10.1006/bcon.2000.0891.
dc.relationGuo, H., Fang, J., Wang, J., Zhong, W., & Liu, B. (2007). Interaction of Xestia c-nigrum granulovirus with peritrophic matrix and Spodoptera litura nucleopolyhedrovirus in Spodoptera litura. Journal of Economic Entomology, 100(1), 20-25. doi:10.1603/0022-0493(2007)100.
dc.relationGurevitz, M., Karbat, I., Cohen, L., Ilan, N., Kahn, R., Turkov, M., … Gordon, D. (2007). The insecticidal potential of scorpion β-toxins. Toxicon, 49(4), 473-489. doi:10.1016/j.toxicon.2006.11.015.
dc.relationGuzo, D., Rathburn, H., Guthrie, K., & Dougherty, E. (1992). Viral and host cellular transcription in Autographa californica nuclear polyhedrosis virus-infected gypsy moth cell lines. Journal of Virology, 66(5), 2966-2972
dc.relationHajos, J., Vermunt, A., Zuidema, D., Kulcsar, P., Varjas, L., De Kort, C., … Vlak, J. (1999). Dissecting insect development: baculovirus-mediated gene silencing in insects. Insect Molecular Biology, 8(4), 539-544. doi:10.1046/j.1365-2583.1999.00150.x.
dc.relationHakim, R. S., Baldwin, K., & Smagghe, G. (2010). Regulation of midgut growth, development, and metamorphosis. Annual Review of Entomology, 55, 593-608. doi:10.1146/ annurev-ento-112408-085450.
dc.relationHarrison, R. L., & Bonning, B. C. (2001). Use of proteases to improve the insecticidal activity of baculoviruses.Biological Control, 20(3), 199-209. doi:10.1006/bcon.2000.0899.
dc.relationHayakawa, T., Ko, R., Okano, K., Seong, S.-I., Goto, C., & Maeda, S. (1999). Sequence analysis of the Xestia c-nigrum granulovirus genome. Virology, 262(2), 277-297. doi:10.1006/viro.1999.9894.
dc.relationHayakawa, T., Shimojo, E., Mori, M., Kaido, M., Furusawa, I., Miyata, S., & Granados, R. (2000). Enhancement of baculovirus infection in Spodoptera exigua (Lepidoptera: Noctuidae) larvae with Autographa californica nucleopolyhedrovirus or Nicotiana tabacum engineered with a granulovirus enhancin gene. Applied Entomology and Zoology, 35(1), 163-170
dc.relationHerrera-Estrella, A., & Chet, I. (1999). Chitinases in biological control. EXS, 87, 171-184. doi:10.1016/S0144- 8617(00)00168-5.
dc.relationHoover, K., Humphries, M. A., Gendron, A. R., & Slavicek, J. M. (2010). Impact of viral enhancin genes on potency of Lymantria dispar multiple nucleopolyhedrovirus in L. dispar following disruption of the peritrophic matrix. Journal of Invertebrate Pathology, 104(2), 150-152. doi:10.1016/j.jip.2010.02.008.
dc.relationHossain, M., Shimizu, S., Matsuki, M., Imamura, M., Sakurai, S., & Iwami, M. (2008). Expression of 20-hydroxyecdysone-induced genes in the silkworm brain and their functional analysis in post-embryonic development. Insect Biochemistry and Molecular Biology, 38(11), 1001-1007
dc.relationHubbard, M., Hynes, R. K., Erlandson, M., & Bailey, K. L. (2014). The biochemistry behind biopesticide efficacy. Sustainable Chemical Processes, 2, 18. doi:10.1186/s40508- 014-0018-x.
dc.relationHukuhara, T., & Wijonarko, A. (2001). Enhanced fusion of a nucleopolyhedrovirus with cultured cells by a virus enhancing factor from an entomopoxvirus. Journal of Invertebrate Pathology, 77(1), 62-67. doi:10.1006/jipa.2000.4991.
dc.relationHukuhara, T., Wijonarko, A., Hosokawa, Y., & Iwano, H. (2003). Enhanced infection of an entomopoxvirus in larvae of the armyworm, Pseudaletia separata (Lepidoptera: Noctuidae), by a granulovirus. Applied Entomology and Zoology, 38(2), 255-259.
dc.relationInternational Committee on Taxonomy of Viruses (ictv). (2016). Virus taxonomy: 2016 Release. Recuperado de https://talk.ictvonline.org/taxonomy
dc.relationIvashuta, S., Zhang, Y., Wiggins, B. E., Ramaseshadri, P., Segers, G. C., Johnson, S., … Bolognesi, R. (2015). Environmental RNAi in herbivorous insects. RNA, 21(5), 840-850. doi:10.1261/rna.048116.114.2.
dc.relationJackson, M. A., & Jaronski, S. T. (2009). Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycological Research, 113(Pt 8), 842-850.
dc.relationJackson, M. A., & Jaronski, S. T. (2012). Development of pilot-scale fermentation and stabilization processes for the production of microsclerotia of the entomopathogenic fungus Metarhizium brunneum strain F52. Biocontrol Science and Technology, 22(8), 915-930.
dc.relationJaronski, S. T., & Jackson, M. A. (2008). Efficacy of Metarhizium anisopliae microsclerotial granules. Biocontrol Science and Technology, 18(8), 849-863.
dc.relationJehle, J., Fritsch, E., Huber, J., & Backhaus, H. (2003). Intraspecific and inter-specific recombination of tortricidspecific granuloviruses during co-infection in insect larvae. Archives of Virology, 148(7), 1317-1333. doi:10.1007/ s00705-003-0104-y
dc.relationKasman, L. M. (2010). Virus/virus interactions. Recuperado de http://virusvirus.net/vvi.php.
dc.relationKhachatourians, G. (1991). Physiology and genetics of entomopathogenic fungi. En D. Arora, I. Ajello, & K. Mukerji (Eds.), Handbook of Applied Mycology. (Vol. 2: Humans, Animals and Insects, pp. 613-663). Nueva York, EE. UU.: M. Dekker
dc.relationKhachatourians, G. (1996). Biochemistry and molecular biology of entomopathogenic fungi. En D. Howard, & J. Miller (Eds.), Human and animal relationships (The Mycota, Vol. vi, pp. 331-363). Berlín, Alemania: Springer
dc.relationKiyatkin, N. I., Kulikovskaya, I. M., Grishin, E. V., Beadle, D. J., & King, L. A. (1995). Functional characterization of black widow spider neurotoxins synthesised in insect cells. European Journal of Biochemistry, 230(3), 854-859.
dc.relationKobori, N. N., Mascarin, G. M., Jackson, M. A., & Schisler, D. A. (2015). Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani. Fungal Biology, 119(4), 179-190.
dc.relationKondo, A., & Maeda, S. (1991). Host range expansion by recombination of the baculoviruses Bombyx mori nuclear polyhedrosis virus and Autographa californica nuclear polyhedrosis virus. Journal of Virology, 65(7), 3625-3632
dc.relationKontogiannatos, D., Swevers, L., Maenaka, K., Park, E. Y., Iatrou, K., & Kourti, A. (2013). Functional characterization of a juvenile hormone esterase related gene in the moth Sesamia nonagrioides through rna interference. Plos One, 8(9), e73834. doi:10.1371/journal. pone.0073834.
dc.relationKourti, A., Swevers, L., & Kontogiannatos, D. (2017). In search of new methodologies for efficient insect pest control: “The RNAi ‘Movement’”. En V. Shields (Ed.), Biological control of pest and vector insects, InTech. Recuperado de https://www.intechopen.com/books/ biological-control-of-pest-and-vector-insects/in-searchof-new-methodologies-for-efficient-insect-pest-controlthe-rnai-movement-. doi:10.5772/66633
dc.relationKramer, K. J., & Muthukrishnan, S. (1997). Insect chitinases: molecular biology and potential use as biopesticides.Insect Biochemistry and Molecular Biology, 27(11), 887-900.
dc.relationKupferschmidt, K. (2013). A lethal dose of rna. Science, 341(6147), 732-733.
dc.relationLauzon, H. A., Jamieson, P. B., Krell, P. J., & Arif, B. M. (2005). Gene organization and sequencing of the Choristoneura fumiferana defective nucleopolyhedrovirus genome. Journal of General Virology, 86(Pt 4), 945-961. Lecuona, R., & Alves, S. (1988). Efficiency of Beauveria bassiana (Bals.) Vuill., B. brongniartii (Sacc.) Petch. and granulose virus on Diatraea saccharalis (F., 1794) at different temperatures. Journal of Applied Entomology, 105(1-5), 223-228.
dc.relationLednev, G., Kryukov, V. Y., Khodyrev, V., Levchenko, M., Duisembekov, B., Sagitov, A., & Glupov, V. (2008). Dynamics of mortality of the migratory locust under synchronous infection with entomopathogenic fungi (Beauveria bassiana, Metarhizium anisopliae) and bacteria Pseudomonas sp. Contemporary Problems of Ecology, 1(2), 210-213.
dc.relationLingg, A., & Donaldson, M. (1981). Biotic and abiotic factors affecting stability of Beauveria bassiana conidia in soil. Journal of Invertebrate Pathology, 38(2), 191-200.
dc.relationLiu, M., Cai, Q., Liu, H., Zhang, B., Yan, J., & Yuan, Z. (2002). Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. Journal of Applied Microbiology, 93(3), 374-379. doi:10.1046/ j.1365-2672.2002.01693.x.
dc.relationLópez-Ferber, M., Simón, O., Williams, T., & Caballero, P. (2003). Defective or effective? Mutualistic interactions between virus genotypes. Proceedings of the Royal Society of London B: Biological Sciences, 270(1530), 2249-2255. doi:10.1098/rspb.2003.2498.
dc.relationLuo, K., & Pang, Y. (2006). Spodoptera litura multicapsid nucleopolyhedrovirus inhibits Microplitis bicoloratus polydnavirus-induced host granulocytes apoptosis. Journal of Insect Physiology, 52(8), 795-806.
dc.relationMa, X.-M., Liu, X.-X., Ning, X., Zhang, B., Han, F., Guan, X.-M., …. Zhang, Q.-W. (2008). Effects of Bacillus thuringiensis toxin Cry1Ac and Beauveria bassiana on Asiatic corn borer (Lepidoptera: Crambidae). Journal of Invertebrate Pathology, 99(2), 123-128.
dc.relationMaeda, S., Volrath, S. L., Hanzlik, T. N., Harper, S. A., Majima, K., Maddox, D. W., … Fowler, E. (1991). Insecticidal effects of an insect-specific neurotoxin expressed by a recombinant baculovirus. Virology, 184(2), 777-780.
dc.relationMamta, B., & Rajam, M. (2017). RNAi technology: a new platform for crop pest control. Physiology and Molecular Biology of Plants, 23(3), 487-501. doi:10.1007/s12298- 017-0443-x
dc.relationManpreet, S., Sawraj, S., Sachin, D., Pankaj, S., & Banerjee, U. (2005). Influence of process parameters on the production of metabolites in solid-state fermentation. Malaysian Journal of Microbiology, 1(2), 1-9.
dc.relationMantzoukas, S., Milonas, P., Kontodimas, D., & Angelopoulos, K. (2013). Interaction between the entomopathogenic bacterium Bacillus thuringiensis subsp. kurstaki and two entomopathogenic fungi in bio-control of Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae). Annals of Microbiology, 63(3), 1083-1091.
dc.relationMao, Y.-B., Cai, W.-J., Wang, J.-W., Hong, G.-J., Tao, X.-Y., Wang, L.-J., … Chen, X.-Y. (2007). Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 25(11), 1307-1313. doi:10.1038/nbt1352.
dc.relationMaurel, V. B., Orliaca, O., & Christen, P. (2003). Sensors and measurements in solid state fermentation: a review. Process Biochemistry, 38(6), 881-889.
dc.relationMazid, S. (2011). A review on the use of biopesticides in insect pest management. International Journal of Science and Advanced Technology, 1(7), 169-178. doi:10.1007/ s10886-005-4244-2.
dc.relationMcClintock, J. T., & Dougherty, E. M. (1987). Superinfection of baculovirus-infected gypsy moth cells with the nuclear polyhedrosis viruses of Autographa californica and Lymantria dispar. Virus Research, 7(4), 351-364.
dc.relationMiller, S. C., Brown, S. J., & Tomoyasu, Y. (2008). Larval RNAi in Drosophila? Development Genes and Evolution, 218(9), 505-510. doi:10.1007/s00427-008-0238-8.
dc.relationMukawa, S., & Goto, C. (2007). Enhancement of nucleopolyhedrovirus infectivity against Mamestra brassicae (Lepidoptera: Noctuidae) by proteins derived from granulovirus and a fluorescent brightener. Journal of Economic Entomology, 100(4), 1075-1083. doi:10.1603/0022-0493(2007)100.
dc.relationMukawa, S., & Goto, C. (2010). Mamestra brassicae nucleopolyhedrovirus infection and enhancing effect of proteins derived from Xestia c-nigrum granulovirus in larvae of Mamestra brassicae and Helicoverpa armigera (Lepidoptera: Noctuidae) on cabbage. Journal of Economic Entomology, 103(2), 257-264. doi:10.1603/EC09211.
dc.relationMwamburi, L., Laing, M., & Miller, R. (2009). Interaction between Beauveria bassiana and Bacillus thuringiensis var. israelensis for the control of house fly larvae and adults in poultry houses. Poultry Science, 88(11), 2307-2314.
dc.relationNakasu, E. Y. T., Karamaouna, F., Partsinevelos, G. K., Abd El Halim, H. M., Fitches, E. C., Pyati, P., … Edwards, M. G. (2016). Sublethal effects of the insecticidal fusion protein ω-ACTX-Hv1a/GNA on the parasitoid Eulophus pennicornis via its host Lacanobia oleracea. Pest Management Science, 72(3), 585-590. doi:10.1002/ps.4030.
dc.relationOrtiz-Urquiza, A., Luo, Z., & Keyhani, N. O. (2015). Improving mycoinsecticides for insect biological control. Applied Microbiology and Biotechnology, 99(3), 1057- 1068. doi:10.1007/s00253-014-6270-x.
dc.relationOrtiz, E., & Possani, L. D. (2015). The unfulfilled promises of scorpion insectotoxins. Journal of Venomous Animals and Toxins including Tropical Diseases, 21, 16. doi:10.1186/ s40409-015-0019-6.
dc.relationOsman, G. H., Assem, S. K., Alreedy, R. M., El-Ghareeb, D. K., Basry, M. A., Rastogi, A., & Kalaji, H. M. (2015). Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis. Scientific Reports, 5, 18067. doi:10.1038/ srep18067.
dc.relationPalli, S., Caputo, G., Sohi, S., Brownwright, A., Ladd, T., Cook, B., … Retnakaran, A. (1996). CfMNPV BlocksAcMNPV-Induced Apoptosis in a Continuous Midgut Cell Line.Virology, 222(1), 201-213. doi:10.1006/ viro.1996.0411.
dc.relationPalli, S. R. (2014). rna interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. Current Opinion in Insect Science, 6, 1-8.
dc.relationPauli, G. (2009). Interação de Metarhizium anisopliae (Metsch.), Beauveria bassiana (Bals.) e vírus da granulose, principais patógenos de Diatraea saccharalis (Fabr. 1794) (Lepidoptera: Crambidae) (tesis de maestría). Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brasil.
dc.relationPelhate, M., & Zlotkin, E. (1982). Actions of insect toxin and other toxins derived from the venom of the scorpion Androctonus australis on isolated giant axons of the cockroach (Periplaneta americana).Journal of Experimental Biology, 97, 67-77.
dc.relationPeng, G., & Xia, Y. (2014). Expression of scorpion toxin LqhIT2 increases the virulence of Metarhizium acridum towards Locusta migratoria manilensis. Journal of Industrial Microbiology and Biotechnology, 41(11), 1659-1666. doi:10.1007/s10295-014-1497-1.
dc.relationPeng, G., & Xia, Y. (2015). Integration of an insecticidal scorpion toxin (BjαIT) gene into Metarhizium acridum enhances fungal virulence towards Locusta migratoria manilensis. Pest Management Science, 71(1), 58-64. doi:10.1002/ps.3762.
dc.relationPerrimon, N., Ni, J., & Perkins, L. (2010). In vivo RNAi: Today and Tomorrow. Cold Spring Harbor Perspectives in Biology, 2(8), a003640. doi:10.1101/cshperspect. a003640.
dc.relationPoprawski, T. J., Robert, P. H., & Maniana, N. K. (1985). Susceptibility of the onion maggot Delia antiqua (Diptera: Antomyiidae) to the mycotoxin Destruxin E. The Canadian Entomologist, 117, 801-802
dc.relationPrabhakar, A., Krishnaiah, K., Janaun, J., & Bono, A. (2005). An overview of engineering aspects of solid state fermentation. Malaysian Journal of Microbiology, 1(2), 10-16
dc.relationRahman, M. M., & Gopinathan, K. P. (2003). Analysis of host specificity of two closely related baculoviruses in permissive and nonpermissive cell lines. Virus Research, 93(1), 13-23.
dc.relationRao, R., Fiandra, L., Giordana, B., de Eguileor, M., Congiu, T., Burlini, N., ... Pennacchio, F. (2004). AcMNPV ChiA protein disrupts the peritrophic membrane and alters midgut physiology of Bombyx mori larvae. Insect Biochemistry and Molecular Biology, 34(11), 1205-1213. doi:10.1016/j.ibmb.2004.08.002.
dc.relationRavensberg, W. J. (2011). A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods. Dordrecht, Países Bajos: Springer.
dc.relationRegev, A., Keller, M., Strizhov, N., Sneh, B., Prudovsky, E., Chet, I., … Schell, J. (1996). Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Applied and Environmental Microbiology, 62(10), 3581-3586.
dc.relationRohou, A., Nield, J., & Ushkaryov, Y. A. (2007). Insecticidal toxins from black widow spider venom. Toxicon, 49(4), 531-549. doi:10.1016/j.toxicon.2006.11.021.
dc.relationRothstein, S. J., DiMaio, J., Strand, M., & Rice, D. (1987). Stable and heritable inhibition of the expression of nopaline synthase in tobacco expressing antisense rna. Proceedings of the National Academy of Sciences, 84(23), 8439-8443. doi:10.1073/pnas.84.23.8439.
dc.relationScott, J. G., Michel, K., Bartholomay, L. C., Siegfried, B. D., Hunter, W. B., Smagghe, G., … Douglas, A. E. (2013). Towards the elements of successful insect RNAi. Journal of Insect Physiology, 59(12), 1212-1221.
dc.relationSchultz, K. L., & Friesen, P. D. (2009). Baculovirus dna replication-specific expression factors trigger apoptosis and shutoff of host protein synthesis during infection. Journal of Virology, 83(21), 11123-11132.
dc.relationShapiro, M. (2000). Effect of two granulosis viruses on the activity of the gypsy moth (Lepidoptera: Lymantriidae) nuclear polyhedrosis virus.Journal of Economic Entomology, 93(6), 1633-1637. doi:10.1603/0022-0493-93.6.1633.
dc.relationShapiro, M., Preisler, H. K., & Robertson, J. L. (1987). Enhancement of baculovirus activity on gypsy moth (Lepidoptera: Lymantriidae) by chitinase. Journal of Economic Entomology, 80(6), 1113-1116.
dc.relationShukla, J. N., Kalsi, M., Sethi, A., Narva, K. E., Fishilevich, E., Singh, S., … Palli, S. R. (2016). Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biology, 13(7), 656-669. doi:10.1080/15476286.2016.1191728.
dc.relationSingh, G., Bhalla, A., Bhatti, J. S., Chandel, S., Rajput, A., Abdullah, A., … Kaur, P. (2014). Potential of chitinases as a biopesticide against agriculturally harmful fungi and insects. Journal of Microbiology and Biotechnology, 3(1), 27-32.
dc.relationSlavicek, J. M. (2012). Baculovirus enhancins and their role in viral pathogenicity. En M. Adoga (Ed.), Molecular virology (pp. 147-168), InTech. doi:10.5772/33285. Recuperado de https://www.intechopen.com/books/molecularvirology/baculovirus-enhancins-and-their-role-in-viralpathogenicity.
dc.relationSmith, M. E., Henkel, T. W., & Rollins, J. A. (2015). How many fungi make sclerotia? Fungal Ecology, 13, 211-220.
dc.relationSong, Z., Lin, Y., Du, F., Yin, Y., & Wang, Z. (2017). Statistical optimisation of process variables and largescale production of Metarhizium rileyi (Ascomycetes: Hypocreales) microsclerotia in submerged fermentation. Mycology, 8(1), 39-47.
dc.relationSong, Z., Shen, L., Zhong, Q., Yin, Y. & Wang, Z. (2016). Liquid culture production of microsclerotia of Purpureocillium lilacinum for use as bionematicide. Nematology, 18(6), 719-726.
dc.relationSong, Z., Yin, Y., Jiang, S., Liu, J., Chen, H., & Wang, Z. (2013). Comparative transcriptome analysis of microsclerotia development in Nomuraea rileyi. BMC Genomics, 14, 411. doi:10.1186/1471-2164-14-411.
dc.relationSparks, W. O., Bartholomay, L., & Bonning, B. (2008). Insect immunity to viruses. En N.E. Beckage (Ed.), Insect Immunology (pp. 209-242). San Diego, EE. UU.: Academic Press.
dc.relationSun, X., Wang, H., Sun, X., Chen, X., Peng, C., Pan, D., … Hu, Z. (2004). Biological activity and field efficacy of a genetically modified Helicoverpa armigera singlenucleocapsid nucleopolyhedrovirus expressing an insectselective toxin from a chimeric promoter.Biological Control, 29(1), 124-137. doi:10.1016/S1049-9644(03)00117-8.
dc.relationTenllado, F., Martínez-García, B., Vargas, M., & Díaz-Ruíz, J. R. (2003). Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnology, 3, 3. doi:10.1186/1472-6750-3-3.
dc.relationThakur, N., Mundey, J. K., & Upadhyay, S. K. (2016). RNAi - Implications in entomological research and pest control. En I. Y. Abdurakhmonov (Ed.), rna Interference, InTech. Recuperado de https://www.intechopen.com/books/rnainterference/rnai-implications-in-entomological-researchand-pest-control. doi:10.5772/61814.
dc.relationThamthiankul, S., Moar, W., Miller, M., & Panbangred, W. (2004). Improving the insecticidal activity of Bacillus thuringiensis subsp. aizawai against Spodoptera exigua by chromosomal expression of a chitinase gene. Applied Microbiology and Biotechnology, 65(2), 183-192. doi:10.1007/s00253-004-1606-6.
dc.relationTimmons, L., Court, D. L., & Fire, A. (2001). Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene, 263(1-2), 103-112. doi:10.1016/S0378-1119(00) 00579-5.
dc.relationTorres, L., & Cotes, A. (1999). Evaluación de la actividad biocontroladora de hongos entomopatógenos contra Premnotrypes vorax (Coleoptera: Curculionidae) mediante su utilización individual y combinada. Revista Colombiana de Entomología, 25(3-4), 121-129.
dc.relationTrung, N. P., Fitches, E., & Gatehouse, J. A. (2006). A fusion protein containing a lepidopteran-specific toxin from the South Indian red scorpion (Mesobuthus tamulus) and snowdrop lectin shows oral toxicity to target insects. BMC Biotechnology, 6, 18. doi:10.1186/1472-6750-6-18.
dc.relationUma Maheswara Rao, C., Uma Devi, K., & Akbar Ali Khan, P. (2006). Effect of combination treatment with entomopathogenic fungi Beauveria bassiana and Nomuraea rileyi (Hypocreales) on Spodoptera litura (Lepidoptera: Noctuidaeae). Biocontrol Science and Technology, 16(3), 221-232.
dc.relationWaner, J. L. (1994). Mixed viral infections: detection and management. Clinical Microbiology Reviews, 7(2), 143- 151. doi:10.1128/CMR.7.2.143.
dc.relationWang, K., Peng, Y., Pu, J., Fu, W., Wang, J., & Han, Z. (2016). Variation in RNAi efficacy among insect species is attributable to dsRNA degradation in vivo. Insect Biochemistry and Molecular Biology, 77, 1-9. doi:10.1016/j. ibmb.2016.07.007.
dc.relationWang, L., Salem, T. Z., Lynn, D. E., & Cheng, X.-W. (2008). Slow cell infection, inefficient primary infection and inability to replicate in the fat body determine the host range of Thysanoplusia orichalcea nucleopolyhedrovirus. Journal of General Virology, 89(Pt 6), 1402-1410.
dc.relationWashburn, J. O., Haas-Stapleton, E. J., Tan, F. F., Beckage, N. E., & Volkman, L. E. (2000). Co-infection of Manduca sexta larvae with polydnavirus from Cotesia congregata increases susceptibility to fatal infection by Autographa californica M nucleopolyhedrovirus. Journal of Insect Physiology, 46(2), 179-190.
dc.relationWhyard, S., Singh, A. D., & Wong, S. (2009). Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochemistry and Molecular Biology, 39(11), 824-832. doi:10.1016/j.ibmb.2009.09.007.
dc.relationWilletts, H. (1971). The survival of fungal sclerotia under adverse environmental conditions. Biological Reviews, 46(3), 387-407.
dc.relationWraight, S. P., & Ramos, M. E. (2005). Synergistic interaction between Beauveria bassiana and Bacillus thuringiensis tenebrionis-based biopesticides applied against field populations of Colorado potato beetle larvae. Journal of Invertebrate Pathology, 90(3), 139-150.
dc.relationYanase, T., Yasunaga, C., Hara, T., & Kawarabata, T. (1998). Coinfection of Spodoptera exigua and Spodoptera frugiperda Cell Lines with the Nuclear Polyhedrosis Viruses of Autographa californica and Spodoptera exigua. Intervirology, 41(6), 244-252. doi:10.1159/000024946.
dc.relationYaroslavtseva, O. N., Dubovskiy, I. M., Khodyrev, V. P., Duisembekov, B. A., Kryukov, V. Y., & Glupov, V. V. (2017). Immunological mechanisms of synergy between fungus Metarhizium robertsii and bacteria Bacillus thuringiensis ssp. morrisoni on Colorado potato beetle larvae. Journal of Insect Physiology, 96, 14-20.
dc.relationZhang, X., Zhang, J., & Zhu, K. (2010). Chitosan/doublestranded rna nanoparticle-mediated rna interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Molecular Biology, 19(5), 683-693. doi:10.1111/j.1365- 2583.2010.01029.x
dc.relationZhiqiang, A. (2005). Handbook of Industrial Mycology. Nueva York, EE. UU.: Marcel Dekker
dc.relationZoog, S. J., Schiller, J. J., Wetter, J. A., Chejanovsky, N., & Friesen, P. D. (2002). Baculovirus apoptotic suppressor P49 is a substrate inhibitor of initiator caspases resistant to P35 in vivo. The EMBO Journal, 21(19), 5130-5140.
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.titleNuevas estrategias para el control biológico de insectos


Este ítem pertenece a la siguiente institución