dc.creatorZapata, Yimmy
dc.creatorCotes, Alba Marina
dc.creatorJijakli, Haissam
dc.creatorWisniewski, Michael
dc.date.accessioned2018-11-28T19:11:25Z
dc.date.accessioned2022-10-12T18:47:59Z
dc.date.available2018-11-28T19:11:25Z
dc.date.available2022-10-12T18:47:59Z
dc.date.created2018-11-28T19:11:25Z
dc.date.issued2018
dc.identifier978-958-740-253-7 (e-book)
dc.identifierhttp://hdl.handle.net/20.500.12324/34060
dc.identifierreponame:Biblioteca Digital Agropecuaria de Colombia
dc.identifierrepourl:https://repository.agrosavia.co
dc.identifierinstname:Corporación colombiana de investigación agropecuaria AGROSAVIA
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4104095
dc.description.abstractA nivel global, la producción agrícola sufre una tensión creciente entre el problema de las enfermedades causadas por hongos que afectan casi a todos los vegetales cosechados, por una parte, y la presión de las agencias reguladoras y de la sociedad que demandan productos inocuos libres de fungicidas de síntesis, por otra. Este escenario ha reactivado el interés por integrar prácticas limpias de control en el manejo de patógenos poscosecha, destacándose el uso de bacterias y levaduras antagonistas, que eran conocidas de tiempo atrás. Para realizar un manejo biológico de las enfermedades durante la poscosecha, es importante distinguir entre infecciones que se originan en campo y que permanecen latentes hasta la maduración del producto, y las infecciones poscosecha sensu stricto. En el primer grupo, se destacan las infecciones por Colletotrichum spp., que se expresan como antracnosis en mango, banano, aguacate, pimentón, entre otras frutas y hortalizas; por Botrytis spp., que causan el moho gris en diferentes especies vegetales, y por Penicillium spp., que puede causar infección en el árbol, en almacén o en puestos de mercado al detal. En el segundo grupo se encuentran hongos oportunistas como Aspergillus spp., Fusarium spp., Mucor spp., Geotrichum candidum y Rhizopus spp., algunos de ellos con implicaciones para la salud humana por la producción de micotoxinas como fumonisinas y aflatoxinas. Este capítulo inicia con una enumeración de las prácticas dirigidas a controlar infecciones en poscosecha, que van desde el buen manejo de los productos cosechados, pasando por tratamientos físicos erradicantes y químicos preventivos, hasta llegar a la aplicación de fungicidas como última medida. Después se hace una reseña histórica del control biológico de enfermedades de frutas en poscosecha, seguida de una descripción de los diferentes modos en que las bacterias y las levaduras ejercen su actividad biocontroladora. Posteriormente, se examina el progreso en el conocimiento de los procesos de control biológico y las limitaciones prácticas para su pleno uso comercial, para terminar con uno de los casos exitosos en su aplicación. Esta revisión pone de presente la necesidad de un enfoque sistémico, que considere la red de interacciones existentes, y que la búsqueda del manejo ideal del problema debe integrar una visión simple en cada nodo del proceso productivo con intervenciones múltiples a lo largo del mismo.
dc.languagespa
dc.publisher‎‎Corporación colombiana de investigación agropecuaria - AGROSAVIA
dc.relation33829 ; Control biológico de fitopatógenos, insectos y ácaros: agentes de control biológico. V. 1
dc.relation222
dc.relation255
dc.relationAbdelfattah, A., Li Destri-Nicosia, M. G., Cacciola, S. O., Droby, S., & Schena, L. (2015). Metabarcoding analysis of fungal diversity in the phyllosphere and carposphere of olive (Olea europaea). Plos One, 10(7), 1-19. doi:10.1371/ journal.pone.0131069.
dc.relationAdikaram, N., Karunanayake, C., & Abayasekara, C. (2010). The role of pre-formed antifungal substances in the resistance of fruits to postharvest pathogens. En D. Prusky & M. L. Gullino (Eds.), Postharvest pathology (pp. 1-11). Dordrecht, Holanda: Springer.
dc.relationAndersen, B., Smedsgaard, J., & Frisvad, J. (2004). Penicillium expansum: Consistent production of patulin, chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. Journal of Agricultural and Food Chemistry, 52(8), 2421- 2428. doi:10.102/jf035406k.
dc.relationAndrews, J. H., & Harris, R. F. (2000). The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology, 38, 145-180. doi:10.1146/ annurev.phyto.38.1.145.
dc.relationArras, G. (1996). Mode of action of an isolate of Candida famata in biological control of Penicillium digitatum in orange fruits. Postharvest Biology and Technology, 8(3), 191-198. doi:10.1016/0925-5214(95)00071-2.
dc.relationArras, G., De Cicco, V., Arru, S., & Lima, G. (1998). Biocontrol by yeasts of blue mould of citrus fruits and the mode of action of an isolate of Pichia guilliermondii. Journal of Horticultureal Science and Biotechnology, 73(3), 413-418. doi:10.1080/14620316.1998.11510993.
dc.relationArrebola, E., Jacobs, R., & Korsten, L. (2009). Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 108(2), 386- 395. doi:10.1111/j.1365-2672.2009.04438.x.
dc.relationArrebola, E., Sivakumar, D., Bacigalupo, R., & Korsten, L. (2010). Combined application of antagonist Bacillus amyloliquefaciens and essential oils for the control of peach postharvest diseases. Crop Protection, 29(4), 369-377. doi:10.1016/j.cropro.2009.08.001.
dc.relationBarkai-Golan, R. (2001). Postharvest diseases of fruits and vegetables: development and control. Amsterdam, Holanda: Elsevier.
dc.relationBastiaanse, H., De Lapeyre de Bellaire, L., Lassois, L., Misson, C., & Jijakli, M. H. (2010). Integrated control of crown rot of banana with Candida oleophila strain O, calcium chloride and modified atmosphere packaging. Biological Control, 53(1), 100-107. doi:10.1016/j. biocontrol.2009.10.012.
dc.relationBatta, Y. A. (2007). Control of postharvest diseases of fruit with an invert emulsion formulation of Trichoderma harzianum Rifai. Postharvest Biology and Technology, 43(1), 143-150. doi:10.1016/j.postharvbio.2006.07.010.
dc.relationBegum, M., Hocking, A. D., & Miskelly, D. (2009). Inactivation of food spoilage fungi by ultra violet (uvc) irradiation. International Journal of Food Microbiology, 129(1), 74-77. doi:10.1016/j.ijfoodmicro.2008.11.020.
dc.relationBencheqroun, S. K., Bajji, M., Massart, S., Labhilili, M., Jaafari, S. E., & Jijakli M. H. (2007). In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: Evidence for the involvement of competition for nutrients. Postharvest Biology Technology, 46(2), 128-135. doi:10.1016/j.postharvbio.2007.05.005.
dc.relationBleve, G., Grieco, F., Cozzi, G., Logrieco, A., & Visconti, A. (2006). Isolation of epiphytic yeasts with potential for biocontrol of Aspergillus carbonarius and A. niger on grape. International Journal of Food Microbiology, 108(2), 204-209. doi:10.1016/j.ijfoodmicro.2005.12.004.
dc.relationBreinig, F., Tipper, D. J., & Schmitt, M. J. (2002). Kre1p, the plasma membrane receptor for the yeast K1 viral toxin. Cell, 108(3), 395-405. doi:10.1016/S0092- 8674(02)00634-7.
dc.relationBryk, H. (1999). The study on the infection of apple fruits by Botrytis cinerea Pers. after harvest. Acta Agrobotanica, 52(1-2), 19-29.
dc.relationBull, C. T., Wadsworth, M. L., Sorensen, K. N., Takemoto, J. Y., Austin, R. K.,... Smilanick, J. L. (1998). Syringomycin E produced by biological control agents controls green mold on lemons. Biological Control, 12(2), 89-95. doi:10.1006/ bcon.1998.0622.
dc.relationCaiazzo, R., Kim, Y., & Xiao, C. L. (2014). Occurrence and Phenotypes of Pyrimethanil Resistance in Penicillium expansum from Apple in Washington State. Plant Disease, 98(7), 924-928. doi:10.1094/PDIS-07-13-0721RE.
dc.relationCalvente, V., Benuzzi, D., & De Tosetti, M. I. S. (1999). Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum, International Biodeterioration and Bioegradation, 43(4), 167-172. doi:10.1016/S0964-8305(99)00046-3.
dc.relationCalvo, J., Calvente, V., De Orellano, M. E., Benuzzi, D., & Sanz de Tosetti M. I. (2003). Improvement in the biocontrol of postharvest diseases of apples with the use of yeast mixtures. Biocontrol, 48(5), 579-593. doi:10.1023/A:1025738811204.
dc.relationCalvo, J., Calvente, V., de Orellano, M. E., Benuzzi, D., & Sanz de Tosetti, M. (2007). Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. International Journal of Food Microbiology, 113(3), 251- 257. doi:10.1016/j.ijfoodmicro.2006.07.003.
dc.relationCanamas, T. P., Viñas, I., Usall, J., Torres, R., Anguera, M., & Teixidó, N. (2008). Control of postharvest diseases on citrus fruit by preharvest applications of biocontrol agent Pantoea agglomerans CPA-2: Part II. Effectiveness of different cell formulations. Postharvest Biology and Technology, 49(1), 96-106. doi:10.1016/j. postharvbio.2007.12.005.
dc.relationCao, S., Zheng, Y., Tang, S., & Wang, K. (2008). Improved control of anthracnose rot in loquat fruit by a combination treatment of Pichia membranifaciens with CaCl2 . International Journal of Food Microbiology, 126(1-2), 216- 220. doi:10.1016/j.ijfoodmicro.2008.05.026.
dc.relationCapdeville, G., Souza, M. T., Santos, J. R. P., Miranda, S. P., Caetano A. R, & Torres, F. A. G. (2007). Selection and testing of epiphytic yeasts to control anthracnose in postharvest of papaya fruit. Scientia Horticulturae, 111(2), 179-185. doi:10.1016/j.scienta.2006.10.003.
dc.relationCarisse, O. (2016). Epidemiology and aerobiology of Botrytis spp. En: S. Fillinger & Y. Elad, Y. (Eds.), Botrytis – the Fungus, the pathogen and its management in agricultural systems (pp. 127-148). Cham, Suiza: Springer International.
dc.relationCastoria, R., De Curtis, F., Lima, G., Caputo, L., Pacifico, S., & De Cicco, V. (2001). Aureobasidium pullulans (LS-30) an antagonist of postharvest pathogens of fruits: study on its modes of action. Postharvest Biology and Technology, 22(1), 7-17. doi:10.1016/S0925-5214(00)00186-1.
dc.relationCoates, L. M., & Johnson, G. I. (1997). Postharvest pathology of fruit and vegetables. En J. Brown & H. Ogle, (Eds.), Plant Pathogens and Plant Diseases (pp. 533- 547). Armidale, Australia: Rockvale.
dc.relationConway, W. S., Sams, C. E., & Hickey, K. D. (2002). Pre- and postharvest calcium treatment of apple fruit and its effect on quality. Acta Horticulture, 594, 413-419. doi:10.17660/ ActaHortic.2002.594.53.
dc.relationÇorbacı, C., & Uçar, F. B. (2017). Production and optimization of killer toxin in Debaryomyces hansenii strains. Brazilian Archives of Biology and Technology, 60, e17160339. doi:10.1590/1678-4324-2017160339.
dc.relationChalutz, E., & Wilson, C. (1990). Postharvest biocontrol of green and blue mold and sour rot of citrus fruit by Debaryomyces hansenii. Plant Diseases, 74, 134-137. doi:10.1094/PD-74-0134.
dc.relationChanchaichaovivat, A., Ruenwongsa, P., & Panijpan, B. (2007). Screening and identification of yeast strains from fruit and vegetables: potential for biological control of postharvest chilli anthracnose (Colletotrichum capsici). Biological Control, 42, 326-335. doi:10.1016/j. biocontrol.2007.05.016.
dc.relationChoudhary, A. K., & Kumari, P. (2010). Management of mycotoxin contamination in preharvest and post harvest crops: present status and future prospects. Journal of Phytology, 2(7), 37-52.
dc.relationDepartamento Nacional de Planeación (dnp). (2016). Pérdida y desperdicio de alimentos en Colombia, estudio de la dirección de seguimiento y evaluación de políticas públicas. Bogotá, Colombia: dnp.
dc.relationDroby, S., Chalutz, E., Wilson, C. L., & Wisniewski, M. E. (1992). Biological control of postharvest diseases: a promising alternative to the use of synthetic fungicides. Phytoparasitica, 20(Supl. 1), S149-S153. doi:10.1007/ bf02980427.
dc.relationDroby, S., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E. E., & Porat, R. (2002). Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology, 92(4), 393-399. doi:10.1094/PHYTO.2002.92.4.393.
dc.relationDroby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biology and Technology, 52(2), 137-145. doi:10.1016/j.postharvbio.2008.11.009.
dc.relationDroby, S., Wisniewski, M., Teixidó, N., Spadaro, D., & Jijakli, M. H. (2016). The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology, 122, 22-29. doi:10.1016/j.postharvbio.2016.04.006.
dc.relationDu Plooy, W., Regnier, T., & Combrinck, S. (2009). Essential oil amended coatings as alternatives to synthetic fungicides in citrus postharvest management. Postharvest Biology and Technology, 53(3), 117-122. doi:10.1016/j. postharvbio.2009.04.005.
dc.relationEl-Ghaouth, A., Smilanick, J. L., & Wilson, C. L. (2000). Enhancement of the performance of Candida saitoana by the addition of glycolchitosan for the control of postharvest decay of apple and citrus fruit. Postharvest Biology and Technology, 19(1), 103-110. doi:10.1016/ S0925-5214(00)00076-4.
dc.relationEl-Ghaouth, A., & Wilson, C. (2002). Patente EUA 6419922B1. Candida saitoana compositions for biocontrol of plant postharvest decay. Washington, EE. UU.: Oficina de Patentes y Marcas de EUA.
dc.relationEl-Ghaouth, A., Wilson, C., & Wisniewski, M. (2003). Control of postharvest decay of apple fruit with Candida saitoana and induction of defense responses. Phytopathology, 93(3), 344-348. doi:10.1094/PHYTO.2003.93.3.344.
dc.relationEl-Ghaouth, A., Wilson, C., & Wisniewski, M. (2004). Biologically-based alternatives to synthetic fungicides for the control of postharvest diseases of fruit and vegetables. En S. A. M. H. Naqvi (Ed.), Diseases of fruit and vegetables (pp. 511-535). Dordrecht, Holanda: Springer.
dc.relationEl-Ghaouth, A., Wilson, C. L., & Wisniewski, M. (1998). Ultrastructural and cytochemical aspects of the biological Control of Botrytis cinerea by Candida saitoana in apple fruit. Phytopathology, 88(4), 282-291. doi:10.1094/ PHYTO.1998.88.4.282.
dc.relationEl-Neshawy, S. M., & Wilson, C. L. (1997). Nisin enhancement of biocontrol of postharvest diseases of apple with Candida oleophila. Postharvest Biology and Technology, 10(1), 9-14. doi:10.1016/S0925-5214(96)00053-1.
dc.relationEnvironmental Protection Agency (epa). (2016). What are Biopesticides? Recuperado de https://www.epa. gov/ingredients-used-pesticide-products/what-arebiopesticides.
dc.relationFaisal, M., Prema, R., Nagendran, K., Karthikeyan, G., Raguchander, T., & Prabakar, K. (2013). Development and evaluation of water in oil based emulsion formulation of Pseudomonas fluorescens (FP7) against Colletotrichum musae incitant of anthracnose disease in banana. Euroepan Journal of Plant Pathology, 138(1), 167-180. doi:10.1007/ s10658-013-0320-6.
dc.relationFan, Q., & Tian, S. P. (2001). Postharvest biological control of grey mold and blue mold on apple by Cryptococcus albidus (Saito) Skinner. Postharvest Biology and Technology, 21(3), 341-350. doi:10.1016/S0925-5214(00)00182-4.
dc.relationFilonow, A. B. (2001). Butyl acetate and yeasts interact in adhesion and germination of Botrytis cinerea conidia in vitro and in fungal decay of golden delicious apple. Journal of Chemical Ecology, 27(4), 831-844. doi:10.1023/A:1010314305461.
dc.relationFourie, J. F., & Holz, G. (1998). Effects of fruit and pollen exudates on growth of Botrytis cinerea and infection of plum and nectarine fruit. Plant Disease, 82(2), 165-170. doi:10.1094/PDIS.1998.82.2.165.
dc.relationFuentes, O. E, García, P. G, & Cotes, A. M. (2002). Evaluation of potential agents for postharvest biocontrol of Alternaria alternata in tomato. Bulletin OILB/SROP, 25(10), 403-406.
dc.relationGamagae, S. U., Sivakumar, D., Wilson Wijeratnam, R. S., & Wijesundra R. L. C. (2003). Use of sodium bicarbonate and Candida oleophila to control anthracnose in papaya during storage. Crop Protection, 22(5), 775-779. doi:10.1016/S0261-2194(03)00046-2.
dc.relationGarcía, G., & Cotes, A. M. (2001). Searching alternatives for biological control of Rhizopus stolonifer in tomato postharvest. Fitopatología colombiana, 25, 39-47.
dc.relationGarcía G., Jiménez, Y., Neisa, A., & Cotes, A. M. (2001). Selection of native yeasts for biological control of post-harvest rots caused by Botrytis allii in onion and Rhizopus stolonifer in tomato. Bulletin OILB/SROP, 24(3), 181-184.
dc.relationGomes, A., Queiroz, M., & Pereira, O. (2015). Mycofumigation for the biological control of postharvest diseases in fruits and vegetables: A review.Bioengineering. Austin Journal of Biotechnology & Bioengineering, 2(4), 1051.
dc.relationGovender, V., Korsten, L., & Sivakumar, D. (2005). Semicommercial evaluation of Bacillus licheniformis to control mango postharvest diseases in South Africa. Postharvest Biology and Technology, 38(1), 57-65. doi:10.1016/j. postharvbio.2005.04.005.
dc.relationGrevesse, C., Jijakli, H., Duterme, O., Colinet, D., & Lepoivre, P. (1998). Preliminary study of exo-b-1, 3-Glucanase encoding genes in relation to the protective activity of Pichia anomala (strain K) against Botrytis cinerea on postharvest apples. Bulletin OILB/SROP = IOBC/ WPRS Bulletin, 21(9), 81-89.
dc.relationGueldner, R. C., Reilly, C. C., Pusey, P. L., Costello, C. E., Arrendale, R. F., Cox, R. H., Himmelsbach, D. S., et al. (1988). Isolation and identification of iturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis. Journal of Agriculture and Food Chemistry, 36(2), 366-370. doi:10.1021/jf00080a031.
dc.relationGuijarro, B., Melgarejo, P., Torres, R., Lamarca, N., Usall, J., & De Cal, A. (2007). Effects of different biological formulations of Penicillium frequentans on brown rot of peaches. Biological Control, 42(1), 86-96. doi:10.1016/j. biocontrol.2007.03.014.
dc.relationIppolito, A., El-Ghaouth, A., Wilson, C. L., & Wisniewski, M. (2000). Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biology and Technology, 19(3), 265- 272. doi:10.1016/S0925-5214(00)00104-6.
dc.relationIppolito, A., & Nigro, F. (2000). Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Protection, 19(8), 715-723. doi:10.1016/S0261-2194(00)00095-8.
dc.relationJanisiewicz, W. J. (1987). Postharvest biological control of blue mold on apple. Phytopathology, 77, 481-485.
dc.relationJanisiewicz, W., & Roitman, J. (1988). Biological control of blue mold and gray mold on apple and pear with Pseudomonas cepacia. Phytopathology, 78(12), 1697-1700.
dc.relationJanisiewicz, W., Yourman, L., Roitman, J., & Mahoney, N. (1991). Postharvest control of blue mould and gray mould of apples and pears by dip treatment with pyrrolnitrin, a metabolite of Pseudomonas cepacia. Plant Disease, 75(5), 490-494. doi:10.1094/PD-75-0490.
dc.relationJanisiewicz, W. J., & Conway, W. S. (2010). Combining biological control with physical and chemical treatments to control fruit decay after harvest. Stewart Postharvest Review 6(1), article 3. doi.10.2212/spr.2010.1.3.
dc.relationJanisiewicz, W. J., & Korsten, L. (2002). Biological control of postharvest diseases of fruits. Annual Review of Phytopathology, 40, 411-441. doi:10.1146/annurev. phyto.40.120401.130158.
dc.relationJanisiewicz, W. J., Bastos Pereira, I., Almeida, M. S., Roberts, D. P., Wisniewski, M., & Kurtenbach, E. (2008). Improved biocontrol of fruit decay fungi with Pichia pastoris recombinant strains expressing Psd1 antifungal peptide. Postharvest Biology and Technology, 47(2), 218- 225. doi:10.1016/j.postharvbio.2007.06.010.
dc.relationJarvis, W. R. (1991). Latent infections in the pre- and postharvest environment. HortScience, 26(6), 801.
dc.relationJijakli, M., Lepoivre, P., Tossut, P., & Thonard, P. (1993). Biological control of Botrytis cinerea and Penicillium sp. on post-harvest apples by two antagonistic yeasts. Mededelingen van de Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen (Rijksuniversiteit te Gent), 58(3b), 1349-1358.
dc.relationJijakli, M.H., Lepoivre, P., & Grevesse, C. (1999). Yeast species for biocontrol of apple postharvest diseases: An encouraging case of study for practical use. En K. G. Mukerji, B. P. Chamola, & R. K. Upadhyay (Eds.), Biotechnological approaches in biocontrol of plant pathogens (pp. 31-49). Boston, EE. UU.: Springer.
dc.relationHelbig, J. (2002). Ability of the antagonistic yeast Cryptococcus albidus to control Botrytis cinerea in strawberry. Biocontrol, 47(1), 85-99. doi:10.1023/A:1014466903941.
dc.relationKarabulut, O. A., & Baykal, N. (2003). Biological control of postharvest diseases of peaches and nectarines by yeasts. Journal of Phytopathology, 151(3), 130-134. doi:10.1046/ j.1439-0434.2003.00690.x.
dc.relationKarabulut, O. A., & Baykal, N. (2004). Integrated control of postharvest diseases of peaches with a yeast antagonist, hot water and modified atmosphere packaging. Crop Protection, 23(5), 431-435. doi:10.1016/j.cropro.2003.09.012.
dc.relationKarabulut, O. A., Arslan, U., Kadir, I., & Gul, K. (2005). Integrated control of post harvest diseases of sweet cherry with yeast antagonist and sodium bicarbonate applications within a hydrocooler. Postharvest Biology and Technology, 37(2), 135-141. doi:10.1016/j.postharvbio.2005.03.003.
dc.relationKecskemeti, E., Berkelmann-Lohnertz, B., & Reineke, A. (2016). Are epiphytic microbial communities in the carposphere of ripening grape clusters (Vitis vinifera l.) different between conventional, organic, and biodynamic grapes? PLoS One, 11, e0160852. doi:10.1371/journal. pone.0160852.
dc.relationKefialew, Y., & Ayalew, A. (2008). Postharvest biological control of anthracnose (Colletotrichum gloeosporioides) on mango (Mangifera indica). Postharvest Biology and Technology, 50(1), 8-11. doi:10.1016/j.postharvbio.2008.03.007.
dc.relationKim, Y. K., Saito, S., & Xiao, C. L. (2015). Occurrence of Fludioxonil resistance in Penicillium digitatum from citrus in california. Plant Diseases, 99(10), 1447. doi:10.1094/ PDIS-02-15-0226-PDN.
dc.relationKinay, P., & Yildiz, M. (2008). The shelf life and effectiveness of granular formulations of Metschnikowia pulcherrima and Pichia guilliermondii yeast isolates that control postharvest decay of citrus fruit. Biological Control, 45(3), 433-440. doi:10.1016/j.biocontrol.2008.03.001.
dc.relationKoomen, I., & Jeffrics, P. (1993). Effects of antagonistic microorganisms on the postharvest development of Colletotrichum gloeosporioides on mango. Plant Pathology, 42(2), 230-237. doi:10.1111/j.1365-3059.1993. tb01495.x.
dc.relationKota, V. R., Kulkarni, S., & Hegde, Y. R. (2006). Postharvest diseases of mango and their biological management. Journal of Plant Disease Science, 1(2), 186-188.
dc.relationKrishnamurthy, S., & Kushalappa, C. G. (1985). Studies on the shelf life and quality of Robusta bananas as affected by post-harvest treatments. Journal of Horticultural Science, 60(4), 549-556. doi: 10.1080/14620316.1985.11515663.
dc.relationLacroix, C. (2010). Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation. Cambridge, Inglaterra: Elsevier.
dc.relationLahlali, R., Raffaele, B., & Jijakli, M. H. (2011). UV protectants for Candida oleophila (strain O), a biocontrol agent of postharvest fruit diseases. Plant Pathology, 60(2), 288-295. doi:10.1111/j.1365-3059.2010.02368.x.
dc.relationLahlali, R., Serrhini, M. N., & Jijakli, M. H. (2004). Efficacy assessment of Candida oleophila (strain O) and Pichia anomala (strain K) against major postharvest diseases of citrus fruits in Morocco. Communations in Agriculture Applied Biological Sciences, 69(4), 601-609.
dc.relationLahlali, R., Serrhini, M. N., & Jijakli, M. H. (2005a). Development of a biological control method against postharvest diseases of citrus fruits. Communications in Agriculture Applied Biological Sciences, 70(3), 47-58.
dc.relationLahlali, R., Serrhini, M. N., & Jijakli, M. H. (2005b). Studying and modelling the combined effect of temperature and water activity on the growth rate of P. expansum. International Journal of Food Microbiology, 103(3), 315- 322. doi:10.1016/j.ijfoodmicro.2005.02.002.
dc.relationLahlali, R., Serrhini, M. N., & Jijakli, M. H. (2004). Efficacy assessment of Candida oleophila (strain O) and Pichia anomala (strain K) against major postharvest diseases of citrus fruit in Morocco. Communications in agricultural and applied biological sciences, 69(4), 601-609
dc.relationLarena, I., Torres, R., de Cal, A., Linan, M., Melgarejo, P., Domenichini, P., … Usall, J. (2005). Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biological Control, 32(2), 305-310. doi:10.1016/j.biocontrol.2004.10.010.
dc.relationLassois, L., de Bellaire, L., & Jijakli, M. H. (2008). Biological control of crown rot of bananas with Pichia anomala strain K and Candida oleophila strain O. Biological Control, 45(3), 410-418. doi:10.1016/j.biocontrol.2008.01.013.
dc.relationLavalard, M. (2017). Agrauxine and Syngenta start a partnership to launch Nexy®. Recuperado de https://www.agrauxine. com/es/2017/05/12/agrauxine-syngenta-nexy/.
dc.relationLima, G., Curtis, F. D., Piedimonte, D., Spina, A. M., & De Cicco, V. (2006). Integration of biocontrol yeast and thiabendazole protects stored apples from fungicide sensitive and resistant isolates of Botrytis cinerea. Postharvest Biology and Technology, 40(3), 301-307. doi:10.1016/j.postharvbio.2006.01.017.
dc.relationLiu, J., Sui, Y., Wisniewski, M., Droby, S., & Liu, Y. (2013). Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology, 167(2), 153-160. doi:10.1016/j. ijfoodmicro.2013.09.004.
dc.relationLong, C. A., Deng, B. X., & Deng, X. (2006). Pilot testing of Kloeckera apiculata for the biological control of postharvest diseases of citrus. Annals of Microbiology, 56(1), 13-17. doi:10.1007/BF03174963.
dc.relationLong, C. A., Deng, B. X., & Deng, X. (2007). Commercial testing of Kloeckera apiculata, isolate 34-9, for biological control of postharvest diseases of citrus fruit. Annals of Microbiology, 57(2), 203-207. doi:10.1007/BF03175208.
dc.relationMagan, N., Medina, A., & Aldred, D. (2011). Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest. Plant Pathology, 60(1), 150-163. doi:10.1111/j.1365-3059.2010.02412.x.
dc.relationMari, M., Neri, F., & Bertolini, P. (2007). Novel approaches to prevent and control postharvest diseases of fruits. Stewart Postharvest Review, 3(6), 4 doi:10.2212/spr.2007.6.4.
dc.relationMarquina, D., Santos, A., & Peinado, J. (2002). Biology of killer yeasts. International Microbiology, 5(2), 65-71. doi:10.1007/s10123-002-0066-z.
dc.relationMartins, G., Vallance, J., Mercier, A., Albertin, W., Stamatopoulos, P., Rey, P., … Masneuf-Pomarède, I. (2014). Influence of the farming system on the epiphytic yeasts and yeast-like fungi colonizing grape berries during the ripening process. International Journal of Food Microbiology, 177, 21-28. doi:10.1016/j. ijfoodmicro.2014.02.002.
dc.relationMason, D., & Dennis, C. (1978). Post-harvest spoilage of Scottish raspberries in relation to pre-harvest fungicide sprays. Londres, Reino Unido: Horticultural Research.
dc.relationMassart, S., Martinez-Medina, M., & Jijakli, M. H. (2015). Biological control in the microbiome era: Challenges and opportunities. Biological Control, 89, 98-108. doi:10.1016/ j.biocontrol.2015.06.003.
dc.relationMikani, A., Etebarian, H. R., Sholberg, P. L., Gorman, D. T., Stokes, S., & Alizadeh, A. (2008). Biological control of apple gray mold caused by Botrytis mali with Pseudomonas fluorescens strains. Postharvest Biology and Technology, 48(1), 107-112. doi:10.1016/j.posthar vbio.2007.09.020.
dc.relationMontesinos-Herrero, C., del Río, M.Á., Pastor, C., Brunetti, O., & Palou, L. (2009). Evaluation of brief potassium sorbate dips to control postharvest Penicillium decay on major citrus species and cultivars. Postharvest Biology and Technology, 52(1), 117-125. doi:10.1016/j. postharvbio.2008.09.012.
dc.relationMorales, H., Sanchis, V., Usall, J., Ramos, A. J., & Marín, S. (2008). Effect of biocontrol agents Candida sake and Pantoea agglomerans on Penicillium expansum growth and patulin accumulation in apples. International Journal of Food Microbiology, 122(1-2), 61-67. doi:10.1016/j. ijfoodmicro.2007.11.056.
dc.relationNational Research Council (nrc). (1987). Management of technology: The hidden competitive advantage. Washington, EE. UU.: National Research Council, The National Academies Press.
dc.relationNunes, C., Teixido, N., Usall, J., & Viñas, I. (2001). Biological control of major postharvest diseases on pear fruit with antagonistic bacteria Pantoea agglomerans (CPA-2). Acta Horticulturae, 553, 403-404. doi:10.17660/Acta Hortic.2001.553.92.
dc.relationNunes, C., Usall, J., Teixidó, N., Fons, E., & Viñas, I. (2002). Postharvest biological control by Pantoea agglomerans (CPA-2) on Golden Delicious apples. Journal Applied Microbiology, 92(2), 247-255. doi:10.1046/j.1365- 2672.2002.01524.x.
dc.relationNunes, C., Usall, J., Teixido, N., Torres, R., & Viñas, I. (2002). Control of Penicillium expansum and Botrytis cinerea on apples and pears with a combination of Candida sake (CPA-1) and Pantoea agglomerans. Journal of Food Protection, 65(1), 178-184.
dc.relationNunes, C., Usall, J., Manso, T., Torres, R., Olmo, M., & García, J. M. (2007). Effect of high temperature treatments on growth of Penicillium spp. and their development on ‘Valencia’ oranges. Food Science and Technology International, 13(1), 63- 68. doi:10.1177/1082013207075601.
dc.relationNunes, C. A. (2012). Biological control of postharvest diseases of fruit. European Journal of Plant Pathology, 133(1), 181-196. doi:10.1007/s10658-011-9919-7.
dc.relationOrganización de las Naciones Unidas para la Alimentación y la Agricultura (fao). (2015a). Iniciativa mundial sobre la reducción de la pérdida y el desperdicio de alimentos. Recuperado de http://www.fao.org/3/a-i4068s.pdf.
dc.relationOrganización de las Naciones Unidas para la Alimentación y la Agricultura (fao). (2015b). Pérdidas y desperdicios de alimentos en América Latina y el Caribe. Recuperado de http://www.fao.org/3/a-i5504s.pdf.
dc.relationPalou, L. (2011). Control integrado no contaminante de enfermedades de poscosecha (cincep): nuevo paradigma para el sector español de los cítricos. Levante Agrícola, (406), 173-183.
dc.relationPalou, L., Smilanick, J., & Droby, S. (2008). Alternatives to conventional fungicides for the control of citrus postharvest green and blue molds. Stewart Postharvest Review, 4(2), 1-16.
dc.relationPark, M. H., & Kim, J. G. (2015). Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biology and Technology, 100, 109-112. doi:10.1016/j.postharvbio.2014.09.013.
dc.relationPerez, M. F., Contreras, L., Garnica, N. M., Fernández-Zenoff, M. V., Farías, M. E., Sepulveda, M., … Dib, J. R. (2016). Native killer yeasts as biocontrol agents of postharvest fungal diseases in lemons. PLoS ONE, 11(10), e0165590. doi:10.1371/journal.pone.0165590.
dc.relationPrusky, D., Alkan, N., Mengiste, T., & Fluhr, R. (2013). Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annual Review of Phytopathology, 51, 155-176. doi:10.1146/annurevphyto-082712-102349.
dc.relationPusey, P. L. (1989). Use of Bacillus subtilis and related organisms as biofungicides. Pesticide Science, 27(2), 133- 140. doi:10.1002/ps.2780270204.
dc.relationPusey, P. L., & Wilson, C. L. (1984). Postharvest biological control of stone fruit brown rot by Bacillus subtilis. Plant Diseases, 68(9), 753-756. doi:10.1094/PD-69-753.
dc.relationQin, G. Z., & Tian, S. P. (2004). Biocontrol of postharvest diseases of jujube fruit by Cryptococcus laurentii combined with a low doses of fungicides under different storage conditions. Plant Disease, 88(5), 497-501.
dc.relationRay, R. C., Swain, M. R., Panda, S. H., & Lata. (2011). Microbial control of postharvest diseases of fruits, vegetables, roots, and tubers. En A. Singh, N. Parmar, & R. C. Kuhad (Eds.), Bioaugmentation, Biostimulation and Biocontrol (pp. 311-355). Berlín, Alemania: Springer. doi:10.1007/978-3-642-19769-7_13.
dc.relationSaravanakumar, D., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2009). Detection of enzymatic activity and partial sequence of a chitinase gene in Metschnikowia pulcherrima strain MACH1 used as post-harvest biocontrol agent. European Journal of Plant Pathology, 123(2), 183-193. doi:10.1007/s10658-008-9355-5.
dc.relationSchena, L., Nigro, F., Pentimone, I., Ligorio, A., & Ippolito, A. (2003). Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biology Technology, 30(3), 209-220. doi:10.1016/S0925-5214(03)00111-X.
dc.relationSeethapathy, P., Gurudevan, T., Subramanian, K. S., & Kuppusamy, P. (2016). Bacterial antagonists and hexanalinduced systemic resistance of mango fruits against Lasiodiplodia theobromae causing stem-end rot. Journal of Plant Interactions, 11(1), 158-166. doi:10.1080/17429 145.2016.1252068.
dc.relationSelitrennikoff, C. P. (2001). Antifungal Proteins. Applied Environmental Microbiology, 67(7), 2883-2894. doi:10.1128/aem.67.7.2883-2894.2001.
dc.relationSharma, R. R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3), 205-221. doi:10.1016/j.biocontrol.2009.05.001.
dc.relationSivakumar, D., Wilson Wijeratnam R. S., Marikar, F. M. M. T., Abeyesekere M., & Wijesundera R. L. C. (2001). Antagonistic effect of Trichoderma harzianum on post harvest pathogens of rambutans. Acta Horticulturae, 553, 389-392. doi:10.17660/ActaHortic.2001.553.88.
dc.relationSivakumar, D., Wilson Wijeratnam, R. S., Abeyesekere, M., & Wijesundera R. L. C. (2002). Combined effect of generally regarded as safe (gras) compounds and Trichoderma harzianum on the control of postharvest diseases of rambutan. Phytoparasitica, 30(1), 43-51. doi:10.1007/BF02983969.
dc.relationSivakumar, D, Wilson Wijeratnam, R. S., Wijesundera, R. L. C., Marikar, F. M. T., & Abeyesekere, M. (2000). Antagonistic effect of Trichoderma harzianum on postharvest pathogens of rambutan (Nephelium lappaceum). Phytoparasitica, 28(3), 240-247. doi:10.1007/ BF02981802.
dc.relationSmilanick, J. L., & Denis-Arrue, R. (1992). Control of green mold of lemons with Pseudomonas species. Plant Disease, 76(5), 481-485. doi:10.1094/PD-76-0481.
dc.relationSpadaro, D., & Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology, 47, 39- 49. doi:10.1016/j.tifs.2015.11.003.
dc.relationSpadaro, D., Vola, R., Piano, S., & Gullino, M. L. (2002). Mechanisms of action and efficacy of four isolates of the yeast Metschnikowia pulcherrima active against postharvest pathogens on apples. Postharvest Biology and Technology, 24(2), 123-134. doi:10.1016/S0925-5214(01)00172-7.
dc.relationSpadaro, D., & Gullino, M. L. (2004). State of the art and future prospects of the biological control of postharvest fruit diseases. International Journal of Food Microbiology, 91(2), 185-194. doi:10.1016/s0168-1605(03)00380-5.
dc.relationSpadaro, D., Garibaldi, A., & Gullino, M. L. (2004). Control of Penicillium expansum and Botrytis cinerea on apple combining a biocontrol agent with hot water dipping and acibenzolar-S-methyl, baking soda, or etanol application. Postharvest Biology and Technology, 33(2), 141-151. doi:10.1016/j.postharvbio.2004.02.002.
dc.relationSyamaladevi, R. M., Lupien, S. L., Bhunia, K., Sablani, S. S., Dugan, F., Rasco, B., Killinger, et al. (2014). UV-C light inactivation kinetics of Penicillium expansum on pear surfaces: Influence on physicochemical and sensory quality during storage. Postharvest Biology and Technology, 87, 27-32. doi:10.1016/j.postharvbio.2013.08.005.
dc.relationTakesako, K., Ikai, K., Haruna, F., Endo, M., Shimanaka, K., Sono, E., Nakamura, T., et al. (1991). Aureobasidins, new antifungal antibiotics. Taxonomy, fermentation, isolation, and properties. The Journal of Antibiotics (Tokyo), 44(9), 919-924. doi:10.7164/antibiotics.44.919.
dc.relationTerao, D., De Carvalho Campos, J. S., Benato, E. A., & Hashimoto, J. M. (2015). Alternative strategy on control of postharvest diseases of mango (Mangifera indica L.) by use of low dose of ultraviolet-c irradiation. Food Engineering Reviews, 7(2), 171-175. doi:10.1007/s12393- 014-9089-4.
dc.relationTian, S., Fan, Q, Xu, Y, & Liu H. (2002). Biocontrol efficacy of antagonist yeasts to gray mold and blue mold on apples and pears in controlled atmospheres. Plant Disease, 86(8), 848-853. doi:10.1094/PDIS.2002.86.8.848.
dc.relationTian, S., Qin, G., & Xu, Y. (2005). Synergistic effects of combining biocontrol agents with silicon against postharvest diseases of jujube fruit. Journal of Food Protection, 68(3), 544-550.
dc.relationTorres, R., Teixidó, N., Viñas, I., Mari, M., Casalini, L., Giraud, M., & Usall J. (2006). Efficacy of andida sake CPA-1 formulation for controlling Penicillium expansum decay on pome fruit from different Mediterranean regions. Journal of Food Protection, 69(11), 2703-2711. doi:10.4315/0362-028X-69.11.2703.
dc.relationTronsmo, A., & Dennis, C. (1977). The use of Trichoderma species to control strawberry fruit rots. Netherlands journal of plant pathology, 83(Supl. 1), 449. doi:10.1007/ bf03041462.
dc.relationUsall, J., Teixido, N., Torres, R., Ochoa de Eribe, X., & Viñas I. (2001). Pilot tests of Candida sake (CPA-1) applications to control postharvest blue mold on apple fruit. Postharvest Biology and Technology, 21(2), 147-156. doi:10.1016/S0925-5214(00)00131-9.
dc.relationValencia-Chamorro, S. A., Palou, L., Del Rio, M. A., & Perez-Gago, M. B., (2011). Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review. Critical Review in Food Science and Nutrition, 51(9), 872-900. doi:10.1080/10408398.2010. 485705.
dc.relationWang, X., Li, G., Jiang, D., & Huang, H. C. (2009). Screening of plant epiphytic yeasts for biocontrol of bacterial fruit blotch (Acidovorax avenae subsp. citrulli) of hami melon. Biological Control, 50(2), 164-171. doi:10.1016/j. biocontrol.2009.03.009.
dc.relationWeir, B. S., Johnston, P. R., & Damm, U. (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73(1), 115-180. doi:10.3114/sim0011.
dc.relationWilson, C. L., & El-Ghaouth, A. (2002). Patent EUA 6423310. Biological coating with a protective and curative effect for the control of postharvest decay. Washington, EE. UU.: Oficina de Patentes y Marcas de EUA.
dc.relationWilson, C. L., & Pusey, P. (1985). Potential for biological control of postharvest plant diseases. Plant Diseases, 69(5), 375-378. doi:10.1094/PD-69-375.
dc.relationWilson, C. L., & Wisniewski, M. E. (1989). Biological control of postharvest diseases of fruits and vegetables: An emerging technology. Annual Review of Phytopathology, 27, 425-441. doi:10.1146/annurev.py.27.090189.002233.
dc.relationWilson, C. L., & Wisniewski, M. E. (1994). Biological control of postharvest diseases: theory and practice. Madison, EE. UU.: CRC Press. Wilson, C. L. Wisniewski, M. E., Droby, S., & Chalutz, E. (1993). A selection strategy for microbial antagonists to control postharvest diseases of fruits and vegetables. Scientia Horticulturae, 53(3), 183-189. doi:10.1016/0304- 4238(93)90066-Y.
dc.relationWisniewski, M., Biles, C., Droby, S., McLaughlin, R., Wilson, C., & Chalutz, E. (1991). Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii. I. Characterization of attachment to Botrytis cinerea. Physiological and Molecular Plant Pathology, 39(4), 245- 258. doi:10.1016/0885-5765(91)90033-E.
dc.relationWisniewski, M., Droby, S., Norelli, J., Liu, J., & Schena, L. (2016). Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biology and Technology, 122, 3-10. doi:10.1016/j.postharvbio.2016.05.012.
dc.relationWisniewski, M., Wilson, C., Droby, S., Chalutz, E., ElGhaouth, A., & Stevens, C. (2007). Postharvest biocontrol: new concepts and applications. En C. Vincent, M. S. Goettel, & L. George (Eds.), Biological control: a global perspective: case studies from around the world (p. 262-273). Boca Ratón, EE. UU.: CAB International.
dc.relationWisniewski, M., Wilson, C., & Hershberger, W., (1989). Characterization of inhibition of Rhizopus stolonifer germination and growth by Enterobacter cloacae. Canadian Journal of Botany, 67(8), 2317-2323. doi:10.1139/ b89-296.
dc.relationWu, F., & Khlangwiset, P. (2010). Health economic impacts and cost-effectiveness of aflatoxin-reduction strategies in Africa: case studies in biocontrol and post-harvest interventions. Food additives and contaminants Part A, 27(4), 496-509. doi:10.1080/19440040903437865.
dc.relationYang, D. M., Bi, Y., Chen, X. R, Ge, Y. H, & Zhao, J. (2006). Biological control of postharvest diseases with Bacillus subtilis (B1 strain) on muskmelons (Cucumis melo L. cv. Yindi). Acta Horticulturae, 712, 735-740. doi:10.17660/ ActaHortic.2006.712.94.
dc.relationYao, H. J., & Tian, S. P. (2005). Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved. Journal of Applied Microbiology, 98(4), 941-950. doi:10.1111/ j.1365-2672.2004.02531.x.
dc.relationZhang, H., Zheng, X., Fu, C., & Xi, Y. (2003). Biological control of blue mold rot of pear by Cryptococcus laurentii. Journal of Horticultural Science and Biotechnology, 78(6), 888-893. doi:10.1080/14620316.2003.11511714.
dc.relationZhang, H., Zheng, X., Fu, C., & Xi, Y. (2005). Postharvest biological control of gray mold rot of pear with Cryptococcus laurentii. Postharvest Biology and Technology, 35(1), 79-86. doi:10.1016/j.postharvbio.2004.03.011.
dc.relationZhang, H., Wang, L., Dong, Y., Jiang, S., Cao, J., & Meng, R. (2007). Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biological Control, 40(2), 287-292. doi:10.1016/j. biocontrol.2006.10.008.
dc.relationZhang, H., Zheng, X., Wang, L., Li, S., & Liu, R. (2007). Effect of antagonist in combination with hot water dips on postharvest Rhizopus rot of strawberries. Journal of Food Engineering, 78(1), 281-287. doi:10.1016/j. jfoodeng.2005.09.027.
dc.relationZhang, H., Zheng, X., & Yu, T. (2007). Biological control of postharvest diseases of peach with Cryptococcus laurentii. Food Control, 18(4), 287-291. doi:10.1016/j. foodcont.2005.10.007.
dc.relationZhang H, Ma, L., Wang, L., Jiang, S., Dong, Y., & Zheng X. (2008) Biocontrol of gray mold decay in peach fruit by integration of antagonistic yeast with salicylic acid and their effects on postharvest quality parameters. Biological Control, 47(1), 60-65. doi:10.1016/j. biocontrol.2008.06.012.
dc.relationZhang, H., Wang, L., Ma, L., Dong, Y., Jiang, S., Xu, B., & Zheng, X. (2009). Biocontrol of major postharvest pathogens on apple using Rhodotorula glutinis and its effects on postharvest quality parameters. Biological Control, 48(1), 79-83. doi:10.1016/j. biocontrol.2008.09.004.
dc.relationZhao, Y., Shao, X. F, Tu, K., & Chen, J. K. (2007). Inhibitory effect of Bacillus subtilis B10 on the diseases of postharvest strawberry. International Journal of Fruit Science, 24(3), 339-343.
dc.relationZhou, T., Northover, J., & Schneider, K. E. (1999). Biological control of postharvest diseases of peach with phyllosphere isolates of Pseudomonas syringae. Canadian Journal of Plant Pathology, 21(4), 375-381. doi:10.1080/07060669909501174.
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.titleControl biológico de patógenos en poscosecha


Este ítem pertenece a la siguiente institución