dc.creator | Aragón, Sandra M. | |
dc.creator | Beltrán Acosta, Camilo | |
dc.date.accessioned | 2018-12-05T14:19:41Z | |
dc.date.accessioned | 2022-10-12T18:43:13Z | |
dc.date.available | 2018-12-05T14:19:41Z | |
dc.date.available | 2022-10-12T18:43:13Z | |
dc.date.created | 2018-12-05T14:19:41Z | |
dc.date.issued | 2018 | |
dc.identifier | 978-958-740-254-4 (e-book) | |
dc.identifier | http://hdl.handle.net/20.500.12324/34157 | |
dc.identifier | reponame:Biblioteca Digital Agropecuaria de Colombia | |
dc.identifier | repourl:https://repository.agrosavia.co | |
dc.identifier | instname:Corporación colombiana de investigación agropecuaria AGROSAVIA | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4101806 | |
dc.description.abstract | Los endófitos constituyen un grupo de microorganismos que viven dentro de las plantas, los cuales mantienen asociaciones ligeramente perceptibles con sus plantas hospederas por al menos parte de su ciclo de vida. Su amplia biodiversidad, así como su capacidad de síntesis de metabolitos secundarios, promoción de crecimiento e inducción de resistencia sistémica, entre otras características, hacen de los hongos endófitos una alternativa de alto potencial para su aplicación en el manejo de insectos plaga y enfermedades en cultivos de importancia agrícola en Colombia y en el resto del mundo. Sin embargo, el estudio de microorganismos endófitos es un área relativamente nueva en la investigación: su biología y las bases moleculares de la interacción plantaendófito se encuentran aún poco exploradas para el caso de los hongos que colonizan plantas vasculares, lo cual reduce el espectro de desarrollo de nuevos productos a base de endófitos, dada la dificultad de generar una formulación que garantice la permanencia del hongo fuera de la planta hospedera y permita la penetración del mismo en diferentes momentos de desarrollo de esta. En este capítulo, se tratarán temas relacionados con su mecanismo de acción, patrones de colonización, formulación y técnicas de aplicación en campo y algunos casos exitosos del uso de hongos endófitos comercialmente disponibles para el manejo de algunos fitopatógenos e insectos plaga. | |
dc.language | spa | |
dc.publisher | Corporación colombiana de investigación agropecuaria - AGROSAVIA | |
dc.relation | 33519 ; Control biológico de fitopatógenos, insectos y ácaros: aplicaciones y perspectivas. V. 2 | |
dc.relation | 850 | |
dc.relation | 877 | |
dc.relation | Akello, J., Dubois, T., Coyne, D., & Kyamanywa, S. (2008).
Endophytic Beauveria bassiana in banana (Musa spp.)
reduces banana weevil (Cosmopolites sordidus) fitness
and damage. Crop Protection, 27(11), 1437-1441.
doi:10.1016/j.cropro.2008.07.003. | |
dc.relation | Anjitha, G. (2017). Role of endophytes in insect control. Acta
Scientific Agriculture, 1(4), 1-3. Recuperado de https://
actascientific.com/ASAG/pdf/ASAG-01-0025.pdf. | |
dc.relation | Aragón, S. M. (2016). How entomopathogenic endophytic
fungi modulate plant-insect interactions (tesis doctoral).
Universidad de Gotinga, Gotinga, Alemania. | |
dc.relation | Arnold, A. E., Mejía, L. C., Kyllo, D., Rojas, E. I., Maynard, Z.,
… Herre, E. A. (2003). Fungal endophytes limit pathogen
damage in a tropical tree. Proceedings of the National
Academy of Sciences of the United States of America,
100(26), 15649-15654. doi:10.1073/pnas.2533483100 | |
dc.relation | Azevedo, J. L., Maccheroni Jr, W., Pereira, J. O., & de
Araújo, W. L. (2000). Endophytic microorganisms: a
review on insect control and recent advances on tropical
plants. Electronic Journal of Biotechnology, 3(1) 15-16.
doi:10.4067/s0717-34582000000100004. | |
dc.relation | Backman, P. A., & Sikora, R. A. (2008). Endophytes: An
emerging tool for biological control. Biological Control,
46(1), 1-3. doi:10.1016/j.biocontrol.2008.03.009. | |
dc.relation | Bailey, B., Bae, H., Crozier, J., Thomas, S., Samuels, G.
J., Vinyard, B. T., & Holmes, K. (2008). Antibiosis,
mycoparasitism, and colonization success for endophytic
Trichoderma isolates with biological control potential
in Theobroma cacao. Biological Control, 46(1), 24-35.
doi:10.1016/j.biocontrol.2008.01.003. | |
dc.relation | Battaglia, D., Bossi, S., Cascone, P., Digilio, M. C., Prieto, J.
D., Fanti, P., ... Trotta, V. (2013). Tomato below ground–
above ground interactions: Trichoderma longibrachiatum
affects the performance of Macrosiphum euphorbiae and its
natural antagonists. Molecular Plant-Microbe Interactions,
26(10), 1249-1256. doi:10.1094/MPMI-02-13-0059-R. | |
dc.relation | Behie, S. W., Jones, S. J., & Bidochka, M. J. (2015). Plant
tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecology, 13,
112-119. doi:10.1016/j.funeco.2014.08.001. | |
dc.relation | Bischoff, J., & White, J.F., Jr. (2005). Evolutionary
development of the Clavicipitaceae. En: J. Dighton, J. F.
White, & P. Oudemans (Eds.), The fungal community: Its
organization and role in the ecosystem (pp. 505-518, 3.
a
ed.).
Boca Raton, EE. UU.: Taylor & Francis. | |
dc.relation | Biswas, C., Dey, P., Satpathy, S., & Satya, P. (2012).
Establishment of the fungal entomopathogen Beauveria
bassiana as a season long endophyte in jute (Corchorus
olitorius) and its rapid detection using scar marker.
BioControl, 57(4), 565-571. doi:10.1007/s10526-011-
9424-0. | |
dc.relation | Bolwerk, A., Lagopodi, A. L., Lugtenberg, B. J. J., &
Bloemberg, G. V. (2005). Visualization of interactions
between a pathogenic and a beneficial Fusarium strain
during biocontrol of tomato foot and root rot. Molecular
Plant-Microbe Interactions, 18(7), 710-721. doi:10.1094/
MPMI-18-0710. | |
dc.relation | Camino-Sánchez, F. J., Zafra-Gómez, A., Ruiz-García, J.,
Bermúdez-Peinado, R., Ballesteros, O., Navalon, A., &
Vílchez, J. L. (2011). UNE-EN ISO/IEC 17025:2005
accredited method for the determination of 121 pesticide
residues in fruits and vegetables by gas chromatographytandem mass spectrometry.Journal of Food Composition and
Analysis, 23(3), 427-440. doi:10.1016/j.jfca.2010.11.009. | |
dc.relation | Card, S., Johnson, L., Teasdale, S., & Caradus, J. (2016).
Deciphering endophyte behaviour: the link between
endophyte biology and efficacious biological control
agents. FEMS Microbiology Ecology, 92(8), fiw114.
doi.10.1093/femsec/fiw114. | |
dc.relation | Clay, K., & Schardl, C. L. (2002). Evolutionary origins and
ecological consequences of endophyte symbiosis with
grasses. The American Naturalist, 160(Suppl. 4), 99-127.
doi:10.1086/342161. | |
dc.relation | Crowder, D. W., & Harwood, J. D. (2014). Promoting
biological control in a rapidly changing world. Biological
Control, 75, 1-7. doi:10.1016/j.biocontrol.2014.04.009. | |
dc.relation | De Souza, J. T., Bailey, B. A., Pomella, A. W. V., Erbe,
E. F., Murphy, C. A., Bae, H., & Hebbar, P. K. (2008).
Colonization of cacao seedlings by Trichoderma
stromaticum, a mycoparasite of the witches' broom
pathogen, and its influence on plant growth and
resistance. Biological Control, 46(1), 36-45. doi:10.1016/j.
biocontrol.2008.01.010. | |
dc.relation | De Souza, J. T., Pomella, A. W. V., Bowers, J. H., Pirovani,
C. P., Loguercio, L. L., & Hebbar, K. P. (2006).
Genetic and biological diversity of Trichoderma
stromaticum, a mycoparasite of the cacao witches'-broom
pathogen. Phytopathology, 96(1), 61-67. doi:10.1094/
PHYTO-96-0061 | |
dc.relation | Dicke, M., Van Loon, J. J. a., & Soler, R. (2009). Chemical
complexity of volatiles from plants induced by multiple
attack. Nature Chemical Biology, 5(5), 317-324.
doi:10.1038/nchembio.169. | |
dc.relation | Duijff, B. J., Pouhair, D., Olivain, C., Alabouvette, C.,
& Lemanceau, P. (1998). Implication of systemic
induced resistance in the suppression of Fusarium
wilt of tomato by Pseudomonas fluorescens WCS417r
and by nonpathogenic Fusarium oxysporum Fo47.
European Journal of Plant Pathology, 104(9), 903-910.
doi:10.1023/A:1008626212305. | |
dc.relation | Dutta, D., Puzari, K.C., Gogoi, R., & Dutta, P. (2014).
Endophytes: exploitation as a tool in plant protection.
Brazilian Archives of Biology and Technology, 57(5), 621-
629. doi:10.1590/S1516-8913201402043. | |
dc.relation | European Food Safety Authority (EFSA). (2012). Conclusion
on the peer review of the pesticide risk assessment of the
active substance Metarhizium anisopliae var. anisopliae
Bipesco 5/F52. European Food Safety Authority Journal,
10(1), 2498. doi:10.2903/j.efsa.2012.2498. | |
dc.relation | European Food Safety Authority (EFSA). (2013). Conclusion
on the peer review of the pesticide risk assessment of the
active substances Beauveria bassiana strains ATCC-74040
and GHA1. European Food Safety Authority Journal, 11(1),
3031. doi:10.2903/j.efsa.2013.3031. | |
dc.relation | Faeth, S. H., Gardner, D. R., Hayes, C. J., Jani, A., Wittlinger,
S. K., & Jones, T. A. (2006). Temporal and spatial
variation in alkaloid levels in Achnatherum robustum, a
native grass infected with the endophyte Neotyphodium.
Journal of Chemical Ecology, 32(2), 307-324. doi:10.1007/
s10886-005-9003-x | |
dc.relation | Faeth, S. H., & Sullivan, T. J. (2003). Mutualistic
asexual endophytes in a native grass are usually
parasitic. The American Naturalist, 161(2), 310-325.
doi:10.1086/345937. | |
dc.relation | Feldmann, F., & Hommes, M. (2013). Endophytes for plant
protection: the registration process at a glance. En: C.
Schneider, C. Leifert, & F. Feldmann (Eds.), Endophytes for plant protection: the state of the art (pp. 214-222).
Braunschweig, Alemania: Deutsche Phytomedizinische
Gesellschaft. | |
dc.relation | Fuchs, J. G., Moënne-Loccoz, Y., & Défago, G. (1997).
Nonpathogenic Fusarium oxysporum strain Fo47 induces
resistance to Fusarium wilt in tomato. Plant Disease,
81(5), 492-496. doi:10.1094/PDIS.1997.81.5.492. | |
dc.relation | Garrido-Jurado, I., Resquín-Romero, G., Amarilla, S. P.,
Ríos-Moreno, A., Carrasco, L., & Quesada-Moraga, E.
(2017). Transient endophytic colonization of melon
plants by entomopathogenic fungi after foliar application
for the control of Bemisia tabaci Gennadius (Hemiptera:
Aleyrodidae). Journal of Pest Science, 90(1), 319-330.
doi:10.1007/s10340-016-0767-2. | |
dc.relation | Gunatilaka, A. A. L. (2006). Natural products from plantassociated microorganisms: Distribution, structural
diversity, bioactivity, and implications of their occurrence.
Journal of Natural Products, 69(3), 509-526. doi:10.1021/
np058128n. | |
dc.relation | Herre, E. A., Mejía, L. C., Kyllo, D. A., Rojas, E., Maynard,
Z., Butler, A., & Van Bael, S. A. (2007). Ecological
implications of anti-pathogen effects of tropical fungal
endophytes and mycorrhizae. Ecology, 88(3), 550-558.
doi:10.1890/05-1606. | |
dc.relation | Hu, G., & Leger, R. J. S. (2002). Field studies using a
recombinant mycoinsecticide (Metarhizium anisopliae)
reveal that it is rhizosphere competent. Applied and
Environmental Microbiology, 68(12), 6383-6387.
doi:10.1128/AEM.68.12.6383. | |
dc.relation | Jaber, L. R., & Ownley, B. H. (2018). Can we use
entomopathogenic fungi as endophytes for dual
biological control of insect pests and plant pathogens?
Biological Control, 116, 36-45. doi:10.1016/j.
biocontrol.2017.01.018. | |
dc.relation | Jaber, L. R., & Vidal, S. (2009). Interactions between an
endophytic fungus, aphids and extrafloral nectaries: Do
endophytes induce extrafloral-mediated defences in Vicia
faba? Functional Ecology, 23(4): 707-714. doi:10.1111/
j.1365-2435.2009.01554.x. | |
dc.relation | Jacobson, R. J., Chandler, D., J. Fenlon, J., & Russell, K. M.
(2001). Compatibility of Beauveria bassiana (Balsamo)
Vuillemin with Amblyseius cucumeris Oudemans
(Acarina: Phytoseiidae) to control Frankliniella occidentalis
Pergande (Thysanoptera: Thripidae) on Cucumber
plants. Biocontrol Science and Technology, 11(3), 391-400.
doi:10.1080/09583150120055808. | |
dc.relation | Jaimes, Y. Y., Moreno, C. A., & Cotes, A. M. (2009). Inducción
de resistencia sistémica contra Fusarium oxysporum
en tomate por Trichoderma koningiopsis th003. Acta
Biológica Colombiana, 14(3), 111-120. Recuperado de
https://revistas.unal.edu.co/index.php/actabiol/article/
view/1344/14224. | |
dc.relation | Jaimes, Y., & Aranzazu, F. (2010). Manejo de las enfermedades
del cacao (Theobroma cacao L.) en Colombia, con énfasis en
monilia (Moniliophthora roreri). Recuperado de http://
www.fedecacao.com.co/site/images/recourses/pub_
doctecnicos/fedecacao-pub-doc_04A.pdf. | |
dc.relation | Jallow, M. F. A., Dugassa-Gobena, D., & Vidal, S. (2008).
Influence of an endophytic fungus on host plant selection
by a polyphagous moth via volatile spectrum changes.
Arthropod-Plant Interactions, 2(1), 53-62. doi:10.1007/
s11829-008-9033-8. | |
dc.relation | Jani, A. J., Faeth, S. H., & Gardner, D. (2010). Asexual
endophytes and associated alkaloids alter arthropod
community structure and increase herbivore abundances
on a native grass. Ecology Letters, 13(1), 106-117.
doi:10.1111/j.1461-0248.2009.01401.x. | |
dc.relation | Krell, V., Jakobs-Schoenwandt, D., Vidal, S., & Patel, A. V.
(2018). Encapsulation of Metarhizium brunneum enhances
endophytism in tomato plants. Biological Control, 116, 62-
73. doi:10.1016/j.biocontrol.2017.05.004. | |
dc.relation | Kumar, J., Schafer, P., Huckelhoven, R., Langen, G.,
Baltruschat, H., Stein, E., Nagarajan, S., & Kogel, K.-H.
(2002). Bipolaris sorokiniana, a cereal pathogen of global
concern: cytological and molecular approaches towards
better control. Molecular Plant Pathology, 3(4), 185-195.
doi:10.1046/j.1364-3703.2002.00120.x. | |
dc.relation | Landa, B. B., López-Díaz, C., Jiménez-Fernández, D., MontesBorrego, M., Muñoz-Ledesma, F. J., Ortiz-Urquiza, A.,
& Quesada-Moraga, E. (2013). In-planta detection and
monitorization of endophytic colonization by a Beauveria
bassiana strain using a new-developed nested and
quantitative PCR-based assay and confocal laser scanning
microscopy. Journal of Invertebrate Pathology, 114(2), 128-
138. doi:10.1016/j.jip.2013.06.007. | |
dc.relation | Lopez, D. C., & Sword, G. A. (2015). The endophytic fungal
entomopathogens Beauveria bassiana and Purpureocillium
lilacinum enhance the growth of cultivated cotton
(Gossypium hirsutum) and negatively affect survival of the
cotton bollworm (Helicoverpa zea). Biological Control, 89,
53-60. doi:10.1016/j.biocontrol.2015.03.010. | |
dc.relation | Macías-Rubalcava, M. L., Hernández-Bautista, B. E.,
Oropeza, F., Duarte, G., González, M. C., Glenn, A. E.,
Hanlin, R. T., & Anaya, A. L. (2010). Allelochemical
Effects of Volatile Compounds and Organic Extracts from
Muscodor yucatanensis, a Tropical Endophytic Fungus
from Bursera simaruba. Journal of Chemical Ecology,
36(10), 1122-1131. doi:10.1007/s10886-010-9848-5. | |
dc.relation | Martin, J. H., Mifsud, D., & Rapisarda, C. (2000). The
whiteflies (Hemiptera: Aleyrodidae) of Europe and
mediterranean basin. Bulletin of Entomological Research,
90(5), 407-448. doi:10.1017/S0007485300000547. | |
dc.relation | Mayoral, F., Benuzzi, M., & Ladurner, E. (2006). Efficacy of
the Beauveria bassiana strain ATCC 74040 (Naturalis®)
against whiteflies on protected crops. iobc/wprs Bulletin,
29(4), 83-88. | |
dc.relation | Mejía, L. C., Herre, E. A., Sparks, J. P., Winter, K., García,
M. N., Van Bael, S. A., … Bulgheresi, S. (2014). Pervasive
effects of a dominant foliar endophytic fungus on
host genetic and phenotypic expression in a tropical
tree. Frontiers in Microbiology, 5, 479. doi:10.3389/
fmicb.2014.00479. | |
dc.relation | Michaud, J. P., Pell, J. K., & Vega, F. E. (2017). When
insect endosymbionts and plant endophytes mediate
biological control outcomes. Biological Control, 116, 1-2.
doi:10.1016/j.biocontrol.2017.11.003. | |
dc.relation | Moon, Y. -S., Donzelli, B. G. G., Krasnoff, S. B., McLane, H.,
Griggs, M. H., Cooke, P., … Churchill, A. C. L. (2008).
Agrobacterium-mediated disruption of a nonribosomal
peptide synthetase gene in the invertebrate pathogen
Metarhizium anisopliae reveals a peptide spore factor.
Applied and Environmental Microbiology, 74(14), 4366-
4380. doi:10.1128/AEM.00285-08 | |
dc.relation | Nielsen, C., Vestergaard, S., Harding, S., Wolsted, C., &
Eilenberg, J. (2006). Biocontrol science and technology
biological control of Strophosoma spp. (Coleoptera :
Curculionidae) in greenery (Abies procera) plantations
using Hyphomycetes. Biocontrol Science and Technology,
16(6), 583-598. doi:10.1080/09583150500532824. | |
dc.relation | Ownley, B. H., Griffin, M. R., Klingeman, W. E., Gwinn, K.
D., Moulton, J. K., & Pereira, R. M. (2008). Beauveria
bassiana: endophytic colonization and plant disease
control. Journal of Invertebrate Pathology, 98(3), 267-270.
doi:10.1016/j.jip.2008.01.010. | |
dc.relation | Ownley, B. H., Gwinn, K. D., & Vega, F. E. (2010).
Endophytic fungal entomopathogens with activity against
plant pathogens: Ecology and evolution. BioControl,
55(1), 113-128. doi:10.1007/s10526-009-9241-x. | |
dc.relation | Parsa, S., Ortiz, V., & Vega, F. E. (2013). Establishing fungal
entomopathogens as endophytes: Towards endophytic
biological control. Journal of Visualized Experiments, 74,
e50360. doi:10.3791/50360. | |
dc.relation | Patel, A. (2014). Introduction. En: Jakobs-Schönwandt,
D., Döring, M., Patel, A., (Eds.), Application Techniques
of Endophytes (pp. 17-22). Bielefeld, Alemania:
Fachhochschule Bielefeld. | |
dc.relation | Pieterse, C. M. J., Poelman, E. H., Van Wees, S. C. M., &
Dicke, M. (2013). Induced plant responses to microbes
and insects. Frontiers in Plant Science, 4, 475. doi:10.3389/
fpls.2013.00475. | |
dc.relation | Poelman, E. H., Bruinsma, M., Zhu, F., Weldegergis, B.
T., Boursault, A. E., Jongema, Y., … Dicke, M. (2012).
Hyperparasitoids use herbivore-induced plant volatiles
to locate their parasitoid host. Plos Biology, 10(11),
e1001435. doi:10.1371/journal.pbio.1001435. | |
dc.relation | Posada, F., Aime, M. C., Peterson, S. W., Rehner, S. A., &
Vega, F. E. (2007). Inoculation of coffee plants with the
fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycological Research, 111(6), 748-757.
doi:10.1016/j.mycres.2007.03.006. | |
dc.relation | Quesada-Moraga, E., Landa, B. B., Muñoz-Ledesma, J.,
Jiménez-Diáz, R. M., & Santiago-Álvarez, C. (2006a).
Endophytic colonisation of opium poppy, Papaver
somniferum, by an entomopathogenic Beauveria bassiana
strain. Mycopathologia, 161(5), 323-329. doi:10.1007/
s11046-006-0014-0. | |
dc.relation | Quesada-Moraga, E., Ruiz-García, A., & Santiago-Alvarez,
C. (2006b). Laboratory evaluation of entomopathogenic
fungi Beauveria bassiana and Metarhizium anisopliae
against puparia and adults of Ceratitis capitata (Diptera:
Tephritidae). Journal of Economic Entomology, 99(6),
1955-1966. doi:10.1603/0022-0493-99.6.1955. | |
dc.relation | Ravensberg, W. J. (2015). Commercialisation of microbes:
Present situation and future prospects. En: B. Lugtenberg
(Ed.), Principles of plant-microbe interactions: Microbes for
sustainable agriculture (pp. 309-317). Leiden, Holanda:
Springer International Publishing. doi:10.1007/978-3-
319-08575-3_32. | |
dc.relation | Resquín-Romero, G., Garrido-Jurado, I., Delso, C., RíosMoreno, A., & Quesada-Moraga, E. (2016). Transient
endophytic colonizations of plants improve the outcome
of foliar applications of mycoinsecticides against chewing
insects. Journal of Invertebrate Pathology, 136, 23-31.
doi:10.1016/J.JIP.2016.03.003. | |
dc.relation | Ríos-Moreno, A., Carpio, A., Garrido-Jurado, I., ArroyoManzanares, N., Lozano-Tovar, M. D., & Arce, L. (2016a).
Production of destruxins by Metarhizium strains under
different stress conditions and their detection by using
UHPLC-MS/MS. Biocontrol Science and Technology,
26(9), 1298-1311. doi:10.1080/09583157.2016.119
5336. | |
dc.relation | Ríos-Moreno, A., Grarrido-Jurado, I., Resquín-Romero, G.,
Arroyo-Manzanares, N., Arce, L., & Quesada-Moraga,
E. (2016b). Destruxin A production by Metarhizium
brunneum strains during transient endophytic
colonization of Solanum tuberosum. Biocontrol Science and
Technology, 26(11), 1574-1585. doi:10.1080/09583157.
2016.1223274. | |
dc.relation | Rodriguez-Saona, C., Blaauw, D. R., & Isaacs, R. (2012).
Manipulation of natural enemies in agroecosystems:
Habitat and semiochemicals for sustainable insect pest
control. En: M. L. Larramendy & S. Soloneski (Eds.),
Integrated Pest Management and Pest Control – Current
and Future Tactics (pp. 89-126). Rijeka, Croacia: InTech. | |
dc.relation | Rodriguez, R. J., White, J. F., Arnold, A. E., & Redman, R.
S. (2009). Fungal endophytes: diversity and functional
roles. The new Phytologist, 182(2), 314-330. doi:10.1111/
j.1469-8137.2009.02773.x. | |
dc.relation | Rohlfs, M., & Churchill, A. C. L. (2011). Fungal secondary
metabolites as modulators of interactions with insects
and other arthropods. Fungal Genetics and Biology, 48(1),
23-34. doi:10.1016/J.FGB.2010.08.008. | |
dc.relation | Saikkonen, K., Faeth, S. H., Helander, M., & Sullivan, T. J.
(1998). Fungal endophytes: A continuum of interactions
with host plants. Annual Review of Ecology and Systematics,
29, 319-343. doi:10.1146/annurev.ecolsys.29.1.319. | |
dc.relation | Saikkonen, K., Helander, M., Faeth, S. H., Schulthess,
F., & Wilson, D. (1999). Endophyte-grass-herbivore
interactions: the case of Neotyphodium endophytes in
Arizona fescue populations. Oecologia, 121(3), 411-420.
doi:10.1007/s004420050946. | |
dc.relation | Saikkonen, K., Helander, M., Ranta, H., Neuvonen, S., Virtanen,
T., Suomela, J., & Vuorinen, P. (1996). Endophyte-mediated
interactions between woody plants and insect herbivores?
Entomologia Experimentalis et Applicata, 80, 269-271.
doi:10.1111/j.1570-7458.1996.tb00932.x | |
dc.relation | Saikkonen, K., Ion, D., & Gyllenberg, M. (2002). The
persistence of vertically transmitted fungi in grass
metapopulations. Proceedings of the Royal Society B:
Biological Sciences, 269(1498), 1397-1403. doi:10.1098/
rspb.2002.2006. | |
dc.relation | Sánchez-Fernández, R. E., Sánchez-Ortiz, B. L., SandovalEspinosa, Y. K., Ulloa-Benítez, Á., Armendáriz-Guillén,
B., García-Méndez, M. C., & Macías-Rubalcava, M.
L. (2013). Hongos endófitos: fuente potencial de
metabolitos secundarios bioactivos con utilidad en
agricultura y medicina. TIP: Revista Especializada en
Ciencias Químico-Biológicas, 16(2), 132-146. doi:10.1016/
S1405-888X(13)72084-9. | |
dc.relation | Scott, R., & Carris, L. (1996). Endophytic fungi in grasses and
woody plants: systematics, ecology, and evolution. Minnesota,
EE. UU.: APS Press. | |
dc.relation | Schulz, B., & Boyle, C. (2005). The endophytic continuum.
Mycological Research, 109(6), 661-686. doi:10.1017/
S095375620500273X. | |
dc.relation | Schulz, B., & Boyle, C. (2006). What are Endophytes?
En: B. Schulz, C. Boyle, & T. Sieber (Eds.), Microbial
Root Endophytes (Soil Biology, vol. 9, pp. 1-14). Berlín,
Alemania: Springer. doi:10.1007/3-540-33526-9. | |
dc.relation | Singh, L. P., Gill, S. S., & Tuteja, N. (2011). Unraveling the
role of fungal symbionts in plant abiotic stress tolerance.
Plant Signaling & Behavior, 6(2), 175-191. doi:10.4161/
psb.6.2.14146. | |
dc.relation | Stone, J. K., Bacon, C. W., & White Jr, J. F. (2000). An overview
of endophytic microbes: Endophytism defined. En: C. W.
Bacon & J. F. White (Eds.), Microbial Endophytes (pp.
4-5). Nueva York, EE. UU.: Marcel Dekker. | |
dc.relation | Strobel, G., & Daisy, B. (2003). Bioprospecting for microbial
endophytes and their natural products. Microbiology and
Molecular Biology Reviews, 67(4), 491-502. doi:10.1128/
MMBR.67.4.491-502.2003. | |
dc.relation | Sun, X., & Guo, L. G. (2012). Endophytic fungal diversity:
review of traditional and molecular techniques. Mycology,
3(1), 65-76. doi:10.1080/21501203.2012.656724. | |
dc.relation | Szendrei, Z., & Rodriguez-Saona, C. (2010). A metaanalysis of insect pest behavioral manipulation with plant
volatiles. Entomologia Experimentalis et Applicata, 134(3),
201-210. doi:10.1111/j.1570-7458.2009.00954.x | |
dc.relation | Tanaka, A., Tapper, B. A., Popay, A., Parker, E. J., & Scott,
B. (2005). A symbiosis expressed non-ribosomal peptide
synthetase from a mutualistic fungal endophyte of
perennial ryegrass confers protection to the symbiotum
from insect herbivory. Molecular Microbiology, 57(4),
1036-1050. doi:10.1111/j.1365-2958.2005.04747.x | |
dc.relation | Ten Hoopen, G. M., Deberdt, P., Mbenoun, M., & Cilas, C.
(2012). Modelling cacao pod growth: implications for
disease control. Annals of Applied Biology, 160(3), 260-
272. doi:10.1111/j.1744-7348.2012.00539.x. | |
dc.relation | Ten Hoopen, G. M., & Krauss, U. (2016). Biological control
of cacao diseases. En: B. A. Bailey & L. W. Meinhardt
(Eds.), Cacao diseases (pp. 511-566). Cham, Suiza:
Springer. doi:10.1007/978-3-319-24789-2_17. | |
dc.relation | Thakur, A., Kaur, S., Kaur, A., & Singh, V. (2013). Enhanced
resistance to Spodoptera litura in endophyte infected
cauliflower plants. Environmental Entomology, 42(2), 240-
246. doi:10.1603/EN12001. | |
dc.relation | Vega, F. E. (2008). Insect pathology and fungal endophytes.
Journal of Invertebrate Pathology, 98(3), 277-279.
doi:10.1016/j.jip.2008.01.008. | |
dc.relation | Vega, F. E., Goettel, M. S., Blackwell, M., Chandler,
D., Jackson, M. A., Keller, S., … Roy, H. E. (2009).
Fungal entomopathogens: new insights on their
ecology. Fungal Ecology, 2(4), 149-159. doi:10.1016/J.
FUNECO.2009.05.001. | |
dc.relation | Verma, S., Varma, A., Rexer, K.-H., Hassel, A., Kost, G.,
Sarbhoy, A., … Franken, P. (1998). Piriformospora indica,
gen. et sp. nov., a New root-colonizing fungus. Mycologia,
90(5), 896-896. doi:10.2307/3761331. | |
dc.relation | Vidal, S., & Jaber, L. R. (2015). Entomopathogenic fungi as
endophytes: plant–endophyte–herbivore interactions and
prospects for use in biological control. Current Science,
109(1), 46-54. | |
dc.relation | Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K.,
Fischer, M., … Kogel, K. -H. (2005). The endophytic
fungus Piriformospora indica reprograms barley to saltstress tolerance, disease resistance, and higher yield.
Proceedings of the National Academy of Sciences of the
United States of America, 102(38), 13386-13391. doi:
10.1073/pnas.0504423102 | |
dc.relation | Wang, Y., & Guo, L. (2007). A comparative study of
endophytic fungi in needles, bark, and xylem of Pinus
tabulaeformis. Canadian Journal of Botany, 85(10), 911-
917. doi:10.1139/B07-084 | |
dc.relation | Webber, J. (1981). A natural control of Dutch elm disease.
Nature, 292, 449-451. doi:10.1038/292449a0. | |
dc.relation | Zhang, L. (2014). Colonization pattern of crop plants by
endophytic fungi (tesis doctoral). Universidad de Gotinga,
Gotinga, Alemania. | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | |
dc.title | Los hongos endófitos en el control biológico de fitopatógenos e insectos plaga | |