dc.contributorGilcione Nonato Costa
dc.contributorhttp://lattes.cnpq.br/8174149218876738
dc.contributorSilas Luiz de Carvalho
dc.contributorSônia Pinto de Carvalho
dc.creatorMateus Gomes Figueira
dc.date.accessioned2022-10-05T22:23:01Z
dc.date.accessioned2022-10-11T01:06:29Z
dc.date.available2022-10-05T22:23:01Z
dc.date.available2022-10-11T01:06:29Z
dc.date.created2022-10-05T22:23:01Z
dc.date.issued2020-02-11
dc.identifierhttp://hdl.handle.net/1843/45982
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4047488
dc.description.abstractLet X be a vector field of class C 2 on bidimensional compact without boundary manifold M2 and γ an orbit of X. The aim of this work is to show Schwartz’s Theorem, which states that if the limit set ω(γ) has not singular points, then ω(γ) is either a closed orbit or ω(γ) = T 2 , and in this case M2 = T 2 . Also some applications of this Theorem will be presented as: Denjoy’s Theorem and that; the orbits of a vector field of class C 2 of the form X = (X1, X2), with X1 ̸= 0, definided on torus are dense on torus if, and only if, the rotation number ρ(f) is irrational.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherBrasil
dc.publisherICX - DEPARTAMENTO DE MATEMÁTICA
dc.publisherPrograma de Pós-Graduação em Matemática
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectVariedades bidimensionais
dc.subjectCampos vetoriais em variedades
dc.subjectTeorema de Schwartz
dc.titleO teorema de Poincaré-Bendixson em variedades compactas bidimensionais sem bordo
dc.typeDissertação


Este ítem pertenece a la siguiente institución