| dc.contributor | Gilcione Nonato Costa | |
| dc.contributor | http://lattes.cnpq.br/8174149218876738 | |
| dc.contributor | Silas Luiz de Carvalho | |
| dc.contributor | Sônia Pinto de Carvalho | |
| dc.creator | Mateus Gomes Figueira | |
| dc.date.accessioned | 2022-10-05T22:23:01Z | |
| dc.date.accessioned | 2022-10-11T01:06:29Z | |
| dc.date.available | 2022-10-05T22:23:01Z | |
| dc.date.available | 2022-10-11T01:06:29Z | |
| dc.date.created | 2022-10-05T22:23:01Z | |
| dc.date.issued | 2020-02-11 | |
| dc.identifier | http://hdl.handle.net/1843/45982 | |
| dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/4047488 | |
| dc.description.abstract | Let X be a vector field of class C 2 on bidimensional compact without boundary manifold M2 and γ an orbit of X. The aim of this work is to show Schwartz’s Theorem, which states that if the limit set ω(γ) has not singular points, then ω(γ) is either a closed orbit or ω(γ) = T 2 , and in this case M2 = T 2 . Also some applications of this Theorem will be presented as: Denjoy’s Theorem and that; the orbits of a vector field of class C 2 of the form X = (X1, X2), with X1 ̸= 0, definided on torus are dense on torus if, and only if, the rotation number ρ(f) is irrational. | |
| dc.publisher | Universidade Federal de Minas Gerais | |
| dc.publisher | Brasil | |
| dc.publisher | ICX - DEPARTAMENTO DE MATEMÁTICA | |
| dc.publisher | Programa de Pós-Graduação em Matemática | |
| dc.publisher | UFMG | |
| dc.rights | Acesso Aberto | |
| dc.subject | Variedades bidimensionais | |
| dc.subject | Campos vetoriais em variedades | |
| dc.subject | Teorema de Schwartz | |
| dc.title | O teorema de Poincaré-Bendixson em variedades compactas bidimensionais sem bordo | |
| dc.type | Dissertação | |