dc.contributorSchützer, Waldeck
dc.contributorhttp://lattes.cnpq.br/8638200922501477
dc.contributorhttp://lattes.cnpq.br/9426745921249950
dc.creatorOliveira Jr., Abel Gomes de
dc.date.accessioned2022-07-18T16:39:17Z
dc.date.accessioned2022-10-10T21:40:43Z
dc.date.available2022-07-18T16:39:17Z
dc.date.available2022-10-10T21:40:43Z
dc.date.created2022-07-18T16:39:17Z
dc.date.issued2022-05-27
dc.identifierOLIVEIRA JR., Abel Gomes de. Extensões H-cleft distinguidas por H-identidades polinomiais. 2022. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16394.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/16394
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4046314
dc.description.abstractOur main object of study is the well-known question asking whether the set of polynomials identities distinguishes PI-algebras up to isomorphism. Let k be an algebraically closed field of characteristic 0 and H a non-semisimple monomial Hopf algebra. We prove that H-Galois objects over k are determined up to H-comodule algebra isomorphism by their polynomial H-identities. Afterwards we show that if H_N^q is a Taft algebra over a finite commutative unital ring R and N is an invertible element in R, then the H_N^q-cleft extensions over R are determined up to H_N^q-comodule R-algebra isomorphism by their polynomial H_N^q-identities.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Matemática - PPGM
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectHopf Algebras
dc.subjectH-Cleft Extensions
dc.subjectPolynomial Identities
dc.subjectÁlgebras de Hopf
dc.subjectExtensões H-Cleft
dc.subjectIdentidades Polinomiais
dc.titleExtensões H-cleft distinguidas por H-identidades polinomiais
dc.typeTesis


Este ítem pertenece a la siguiente institución