dc.contributor | Schützer, Waldeck | |
dc.contributor | http://lattes.cnpq.br/8638200922501477 | |
dc.contributor | http://lattes.cnpq.br/9426745921249950 | |
dc.creator | Oliveira Jr., Abel Gomes de | |
dc.date.accessioned | 2022-07-18T16:39:17Z | |
dc.date.accessioned | 2022-10-10T21:40:43Z | |
dc.date.available | 2022-07-18T16:39:17Z | |
dc.date.available | 2022-10-10T21:40:43Z | |
dc.date.created | 2022-07-18T16:39:17Z | |
dc.date.issued | 2022-05-27 | |
dc.identifier | OLIVEIRA JR., Abel Gomes de. Extensões H-cleft distinguidas por H-identidades polinomiais. 2022. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16394. | |
dc.identifier | https://repositorio.ufscar.br/handle/ufscar/16394 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/4046314 | |
dc.description.abstract | Our main object of study is the well-known question asking whether the set of polynomials identities distinguishes PI-algebras up to isomorphism. Let k be an algebraically closed field of characteristic 0 and H a non-semisimple monomial Hopf algebra. We prove that H-Galois objects over k are determined up to H-comodule algebra isomorphism by their polynomial H-identities. Afterwards we show that if H_N^q is a Taft algebra over a finite commutative unital ring R and N is an invertible element in R, then the H_N^q-cleft extensions over R are determined up to H_N^q-comodule R-algebra isomorphism by their polynomial H_N^q-identities. | |
dc.language | por | |
dc.publisher | Universidade Federal de São Carlos | |
dc.publisher | UFSCar | |
dc.publisher | Programa de Pós-Graduação em Matemática - PPGM | |
dc.publisher | Câmpus São Carlos | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/br/ | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Brazil | |
dc.subject | Hopf Algebras | |
dc.subject | H-Cleft Extensions | |
dc.subject | Polynomial Identities | |
dc.subject | Álgebras de Hopf | |
dc.subject | Extensões H-Cleft | |
dc.subject | Identidades Polinomiais | |
dc.title | Extensões H-cleft distinguidas por H-identidades polinomiais | |
dc.type | Tesis | |