dc.contributorDias, Teresa Cristina Martins
dc.contributorhttp://lattes.cnpq.br/0187724276640668
dc.contributorhttp://lattes.cnpq.br/3552187096130268
dc.creatorSantos, Amanda Kely Faria dos
dc.date.accessioned2022-05-13T09:48:44Z
dc.date.accessioned2022-10-10T21:40:14Z
dc.date.available2022-05-13T09:48:44Z
dc.date.available2022-10-10T21:40:14Z
dc.date.created2022-05-13T09:48:44Z
dc.date.issued2022-04-18
dc.identifierSANTOS, Amanda Kely Faria dos. Utilização de métodos de aprendizado de máquina para estimação de escores de propensão. 2022. Trabalho de Conclusão de Curso (Graduação em Estatística) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/16123.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/16123
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4046162
dc.description.abstractIncreasingly larger and more complex databases can be easily obtained and appropriate technologies for modeling massive amounts of data become increasingly necessary in order to optimize results and predictions. Machine learning techniques are gaining prominence in several areas and one of these is the analysis of propensity scores. In this work, the objective is to present and compare machine learning techniques. More specifically, the objective is to compare the classification tree and neural networks methodologies with logistic regression, a technique widely used in the analysis of propensity scores. Also, to know which benefits these machine learning techniques add more, to the detriment of models obtained via logistic regression, in the estimation of propensity scores. To achieve the objective, some applications are presented and discussed. The analysis procedure was developed with functions already implemented in Python libraries.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherCâmpus São Carlos
dc.publisherEstatística - Es
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectÁrvore de classificação
dc.subjectAprendizado de máquina
dc.subjectRedes neurais
dc.subjectModelo perceptron
dc.subjectClassification tree
dc.subjectMachine learning
dc.subjectNeural networks
dc.subjectPerceptron model
dc.titleUtilização de métodos de aprendizado de máquina para estimação de escores de propensão
dc.typeOtros


Este ítem pertenece a la siguiente institución