dc.contributorZuanetti, Daiane Aparecida
dc.contributorhttp://lattes.cnpq.br/8352484284929824
dc.contributorhttp://lattes.cnpq.br/1099499926393005
dc.creatorBogoni, Mariella Ananias
dc.date.accessioned2022-02-23T18:24:34Z
dc.date.accessioned2022-10-10T21:38:59Z
dc.date.available2022-02-23T18:24:34Z
dc.date.available2022-10-10T21:38:59Z
dc.date.created2022-02-23T18:24:34Z
dc.date.issued2022-02-15
dc.identifierBOGONI, Mariella Ananias. Bayesian variable selection for logistic mixture models with Pólya-Gamma data augmentation. 2022. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15643.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/15643
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4045708
dc.description.abstractIn this work, Bayesian methods for estimating and selecting variables in a mixture of logistic regressions model are presented. In order to simplify its Bayesian estimation, we extend the data augmentation approach with Pólya-Gamma random variables to the mixture of logistic regression models. Through the data augmentation approach, we present a Gibbs sampling algorithm for estimating the full model, and the number of components in the mixture is identified by Bayesian model selection criteria. In the model with variable selection, we investigate the performance of two prior distributions for the regression coefficients, adding a second set of latent variables to indicate the presence and non-presence of the predictor variables at each component of the mixture. Analogously to the full model, a Gibbs sampling algorithm is applied to the model with variable selection and the conjugation obtained for the distribution of the regression coefficients, through the inclusion of Pólya-Gamma variables, allows us to analytically calculate the marginal likelihood and gain computational efficiency in the variable selection process. To analyse the performance, the presented methodologies are applied in simulated and real data.
dc.languageeng
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectVariable selection
dc.subjectG-prior
dc.subjectSpike and slab prior
dc.subjectPólya-Gamma-sampling
dc.subjectSeleção de variáveis
dc.subjectG-priori
dc.subjectPriori spike e slab
dc.titleBayesian variable selection for logistic mixture models with Pólya-Gamma data augmentation
dc.typeTesis


Este ítem pertenece a la siguiente institución