Tesis
Identidades polinomiais graduadas para a álgebra das matrizes triangulares superiores sobre um corpo finito
Fecha
2021-12-14Registro en:
Autor
Riva, Evandro
Institución
Resumen
Let K be a field of characteristic p and let UTn = UTn(K) be the algebra of n x n upper triangular matrices over K with the usual product a . b of the elements a,b ∈ UTn. In this thesis we describe the set of all G-graded polynomial identities of UTn, where G is any group and K is any finite field.
The vector space UTn with the new product [a,b] = a . b - b . a is a Lie algebra, denoted by UTn^(-). We describe the set of all G-graded polynomial identities of UT2^(-), where G is any abelian group and K is any field with characteristic p ≠ 2.
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Identidades graduadas em álgebras não-associativas
Silva, Diogo Diniz Pereira da Silva e -
Estructura de álgebra de Poisson de la cohomología de ciertas álgebras de Lie nilpotentes
Gutierrez, Gonzalo Emanuel Matías (2022-07-29)Si g es un álgebra de Lie, la cohomología H**(g) tiene una estructura de súper-álgebra de Poisson con producto asociativo súper-conmutativo V y un súper-corchete de Lie {-,-} que se compatibiliza con el producto \vee en ... -
Introdução elementar às álgebras Clifford 'CL IND.2' 'CL IND. 3'
Resende, Adriana Souza