dc.contributorVendrúscolo, Daniel
dc.contributorhttp://lattes.cnpq.br/8602232587914830
dc.contributorhttp://lattes.cnpq.br/1636387954255127
dc.creatorCruz, Raquel Magalhães de Almeida
dc.date.accessioned2021-11-29T13:43:21Z
dc.date.accessioned2022-10-10T21:37:53Z
dc.date.available2021-11-29T13:43:21Z
dc.date.available2022-10-10T21:37:53Z
dc.date.created2021-11-29T13:43:21Z
dc.date.issued2021-08-09
dc.identifierCRUZ, Raquel Magalhães de Almeida. Grupos de tranças de superfícies e espaços de recobrimento. 2021. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15188.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/15188
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4045326
dc.description.abstractGiven M a compact and connected surface without boundary, we define the braid groups of M, denoted by B_n(M), geometrically. We also explore its relation with the configuration space and the mapping class group of the same surface. In a more detailed manner, we present some relevant algebraic and geometric aspects of the braid groups of three specific surfaces, namely the closed disk, the sphere and the real projective plane. Later we consider p \colon \tilde{M} \rightarrow M a d-fold covering map and discuss the existence of an embedding from B_n(M)$ to $B_{dn}(\tilde{M}). In the possession of such result, we study the classification of the finite subgroups of B_n(\mathbb{R}P^2) and the mapping class group of the real projective plane. We conclude with the study of the algebraic realization of the finite dicyclic subgroups of B_n(\mathbb{R}P^2).
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Matemática - PPGM
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectTranças de Artin
dc.subjectGrupos de tranças de superfícies
dc.subjectEspaços de configuração
dc.subjectEspaços de recobrimento
dc.subjectArtin braids
dc.subjectSurface braid groups
dc.subjectConfiguration spaces
dc.subjectCovering spaces
dc.titleGrupos de tranças de superfícies e espaços de recobrimento
dc.typeTesis


Este ítem pertenece a la siguiente institución