| dc.contributor | Gonçalves, Dimas José | |
| dc.contributor | http://lattes.cnpq.br/1668407948840456 | |
| dc.contributor | http://lattes.cnpq.br/9042467665583924 | |
| dc.creator | Salomão, Mateus Eduardo | |
| dc.date.accessioned | 2021-11-24T15:30:55Z | |
| dc.date.accessioned | 2022-10-10T21:37:46Z | |
| dc.date.available | 2021-11-24T15:30:55Z | |
| dc.date.available | 2022-10-10T21:37:46Z | |
| dc.date.created | 2021-11-24T15:30:55Z | |
| dc.date.issued | 2021-10-28 | |
| dc.identifier | SALOMÃO, Mateus Eduardo. Identidades polinomiais para a álgebra de Jordan das matrizes triangulares superiores 2x2. 2021. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/15149. | |
| dc.identifier | https://repositorio.ufscar.br/handle/ufscar/15149 | |
| dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/4045277 | |
| dc.description.abstract | Let K be a field (finite or infinite) of char(K) ≠ 2, and let UTn = UTn(K) be the n x n upper triangular matrix algebra over K. If · is the usual product on UTn, then with the new product a ○ b = (1/2)(a·b + b·a), UTn becomes a Jordan algebra, denoted by UJn = UJn(K). In this thesis, we describe the set I of all polynomial identities of UJ2 for any K, and we prove that I has the Specht property when K is infinite, namely that, I and every T-ideal containing I, is finitely generated as a T-ideal. Moreover, we describe the set of all Z2-graded polynomial identities of UJ2 with any Z2-grading, and we describe a linear basis for the corresponding relatively free Z2-graded algebra. | |
| dc.language | por | |
| dc.publisher | Universidade Federal de São Carlos | |
| dc.publisher | UFSCar | |
| dc.publisher | Programa de Pós-Graduação em Matemática - PPGM | |
| dc.publisher | Câmpus São Carlos | |
| dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/br/ | |
| dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Brazil | |
| dc.subject | Ágebra das matrizes triangulares superiores | |
| dc.subject | Álgebra de Jordan | |
| dc.subject | Identidades polinomiais | |
| dc.subject | Álgebra graduada | |
| dc.subject | Identidades polinomiais graduadas | |
| dc.subject | Propriedade de Specht | |
| dc.subject | Upper triangular matrix algebra | |
| dc.subject | Jordan algebra | |
| dc.subject | Polynomial identities | |
| dc.subject | Graded algebra | |
| dc.subject | Graded polynomial identities | |
| dc.subject | Specht property | |
| dc.title | Identidades polinomiais para a álgebra de Jordan das matrizes triangulares superiores 2x2 | |
| dc.type | Tesis | |