dc.contributorBarreto, Alexandre Paiva
dc.contributorhttp://lattes.cnpq.br/3369766702725474
dc.contributorhttp://lattes.cnpq.br/8744882105868593
dc.creatorBelli, Rafael da Silva
dc.date.accessioned2021-07-29T20:03:06Z
dc.date.accessioned2022-10-10T21:36:41Z
dc.date.available2021-07-29T20:03:06Z
dc.date.available2022-10-10T21:36:41Z
dc.date.created2021-07-29T20:03:06Z
dc.date.issued2021-06-25
dc.identifierBELLI, Rafael da Silva. Geometria Diferencial via Referenciais Móveis. 2021. Trabalho de Conclusão de Curso (Graduação em Matemática) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/14683.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/14683
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4044878
dc.description.abstractIn this work, we present a study on the theory of differential geometry of surfaces with a language of moving references. At first, we will introduce some groups of matrices and their actions in Euclidean space. Once this is done, we will talk about Euclidean mobile frames and show the procedure to obtain "the best possible frame". We use this to demonstrate Bonnet's existence and congruence theorems, and to find curvatures of some families of surfaces. Finally, we will introduce the general notion of Lie groups, Lie algebras and Lie group actions on differentiable manifolds, concluding that, through a generalization of the moving frame, Euclidean theory extends to any differentiable manifold, in particular, to the spherical and hyperbolic spaces.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherCâmpus São Carlos
dc.publisherMatemática - MB
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsCC0 1.0 Universal
dc.subjectReferencial Móvel, Grupos de Lie, Superfícies de Weingarten
dc.titleGeometria Diferencial via Referenciais Móveis
dc.typeOtros


Este ítem pertenece a la siguiente institución