dc.contributorMoura, Maria Sílvia de Assis
dc.contributorhttp://lattes.cnpq.br/9410151859448447
dc.contributorhttp://lattes.cnpq.br/8120851517975522
dc.creatorGremes, Kaê da Silva
dc.date.accessioned2021-07-07T23:43:18Z
dc.date.accessioned2022-10-10T21:36:20Z
dc.date.available2021-07-07T23:43:18Z
dc.date.available2022-10-10T21:36:20Z
dc.date.created2021-07-07T23:43:18Z
dc.date.issued2021-06-30
dc.identifierGREMES, Kaê da Silva. Um estudo sobre wavestrap. 2021. Trabalho de Conclusão de Curso (Graduação em Estatística) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/14546.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/14546
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4044753
dc.description.abstractWavelets are basis of function spaces that can be used to represent both continuous (functions) and discrete (sequences) signals; wavelets study gained great notoriety after the work of Daubechies, who developed a wavelet family with compact support (DAUBECHIES,1988). Also in the second half of twentiest century the great advances in computer processing allowed the emergence of various computation intensive methods, such as bootstrap (EFRON, 1979). One of the key assumptions to use bootstrap is that the sample elements are not correlated, generally that is not a characteristic found in time series analysis. This study presents a review on wavestrap: a technique that joins both wavelet analysis and bootstrap resampling. By applying bootstrap to the wavelet transform coeficients we can generate samples that retain roughly the same characteristics of the original signal. We also analyze other nonparametric con fidence intervals based on bootstrap for estimating the fi rst autocorrelation of fi rst order autorregressive processes.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherCâmpus São Carlos
dc.publisherEstatística - Es
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectSéries temporais
dc.subjectBootstrap
dc.subjectWavelets
dc.subjectWavestrap
dc.titleUm estudo sobre wavestrap
dc.typeOtros


Este ítem pertenece a la siguiente institución