dc.contributorEhlers, Ricardo Sandes
dc.contributorhttp://lattes.cnpq.br/4020997206928882
dc.contributorhttp://lattes.cnpq.br/6477788005623690
dc.creatorPaixão, Rafael Soares
dc.date.accessioned2021-06-22T22:01:24Z
dc.date.accessioned2022-10-10T21:35:56Z
dc.date.available2021-06-22T22:01:24Z
dc.date.available2022-10-10T21:35:56Z
dc.date.created2021-06-22T22:01:24Z
dc.date.issued2021-05-13
dc.identifierPAIXÃO, Rafael Soares. Método Zero-Variance para Monte Carlo Hamiltoniano aplicado a modelos GARCH univariados e multivariados. 2021. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/14410.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/14410
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4044617
dc.description.abstractThis PhD work develops, compares and applies Monte Carlo Markov Chains (MCMC) methods for parameter estimation in univariate and multivariate GJR-GARCH models. Specifically, the following problems are addressed: (i) conception of a purely bayesian estimation approach; (ii) development of a bayesian method for higher computational efficiency in parameter estimation; and (iii) flexible selection of residual probability distributions for GJR-GARCH models. As a result from the investigations of the aforementioned problems, this work presents four contributions. The first corresponds to a bayesian inference approach for univariate and multivariate GJR-GARCH models. The second consists of studying three residual probability distributions, one of which having been inovatively employed for multivariate cases. The third combines two techniques, namely the Hamiltonian Monte Carlo (HMC) algorithm and the Zero-Variance method, to allow parameter estimation in GJR-GARCH models with higher estimator efficiency, as well as higher computational performance. Finally, the fourth presents results from simulation studies and an application over real-world data, in the context of worldwide stock market indexes, show that the proposed contributions solve the addressed problems effective and efficiently, advancing the state of the art of univariate and multivariate GARCH models.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectInferência bayesiana
dc.subjectMonte Carlo Hamiltoniano
dc.subjectBayesian inference
dc.subjectHamiltonian Monte Carlo
dc.subjectZero-Variance
dc.subjectGARCH
dc.titleMétodo Zero-Variance para Monte Carlo Hamiltoniano aplicado a modelos GARCH univariados e multivariados
dc.typeTesis


Este ítem pertenece a la siguiente institución