dc.contributorStern, Rafael Bassi
dc.contributorhttp://lattes.cnpq.br/7846211197320014
dc.contributorhttp://lattes.cnpq.br/7702409804193862
dc.creatorZabanova, Tatyana
dc.date.accessioned2021-04-23T11:15:30Z
dc.date.accessioned2022-10-10T21:35:14Z
dc.date.available2021-04-23T11:15:30Z
dc.date.available2022-10-10T21:35:14Z
dc.date.created2021-04-23T11:15:30Z
dc.date.issued2019-05-14
dc.identifierZABANOVA, Tatyana. Regularização social em sistemas de recomendação com filtragem colaborativa. 2019. Dissertação (Mestrado em Ciências Fisiológicas) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/14168.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/14168
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4044387
dc.description.abstractModels based on matrix factorization are among the most successful implementations of Recommender Systems. In this project, we study the possibilities of incorporating the information from social networks to improve the quality of predictions of the model both in traditional Collaborative Filtering and in Neural Collaborative Filtering. Based on four examples, we registered that incorporating information from the social network in fact leads to better estimates of the evaluations of itens by users.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma Interinstitucional de Pós-Graduação em Ciências Fisiológicas - PIPGCF
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectSistema de recomendação
dc.subjectFiltragem colaborativa
dc.subjectFatoração de matrizes
dc.subjectRegularização social
dc.subjectFiltragem colaborativa neural
dc.subjectRecommender system
dc.subjectCollaborative filtering
dc.subjectMatrix factorization
dc.subjectSocial regu-larization
dc.subjectNeural collaborative filtering
dc.titleRegularização social em sistemas de recomendação com filtragem colaborativa
dc.typeTesis


Este ítem pertenece a la siguiente institución