dc.contributorNaldi, Murilo Coelho
dc.contributorhttp://lattes.cnpq.br/0573662728816861
dc.contributorRossi, André Luis Debiaso
dc.contributorhttp://lattes.cnpq.br/5604829226181486
dc.contributorhttp://lattes.cnpq.br/5980966794385896
dc.creatorSbrana, Attilio
dc.date.accessioned2021-02-05T12:33:09Z
dc.date.accessioned2022-10-10T21:34:09Z
dc.date.available2021-02-05T12:33:09Z
dc.date.available2022-10-10T21:34:09Z
dc.date.created2021-02-05T12:33:09Z
dc.date.issued2021-01-27
dc.identifierSBRANA, Attilio. N-BEATS-RNN: deep learning for time series forecasting. 2021. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, Sorocaba, 2021. Disponível em: https://repositorio.ufscar.br/handle/ufscar/13820.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/13820
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4044045
dc.description.abstractThis work presents N-BEATS-RNN, an extended version of an ensemble of deep learning networks for time series forecasting, N-BEATS. We apply a state-of-the-art Neural Architecture Search, based on a fast and efficient weight-sharing search, to solve for an ideal Recurrent Neural Network architecture to be added to N-BEATS. We evaluated the proposed N-BEATS-RNN architecture in the widely-known M4 competition dataset, which contains 100,000 time series from a variety of sources. N-BEATS-RNN achieves comparable results to N-BEATS and the M4 competition winner while employing solely 108 models, as compared to the original 2,160 models employed by N-BEATS, when composing its final ensemble of forecasts. Thus, N-BEATS-RNN's biggest contribution is in its training time reduction, which is in the order of 9 times compared with the original ensembles in N-BEATS.
dc.languageeng
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Ciência da Computação - PPGCC-So
dc.publisherCâmpus Sorocaba
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectPrevisão de séries temporais
dc.subjectAprendizado de máquina
dc.subjectAprendizado profundo
dc.subjectTime series forecasting
dc.subjectDeep learning
dc.subjectMachinel learning
dc.titleN-BEATS-RNN: deep learning for time series forecasting
dc.typeTesis


Este ítem pertenece a la siguiente institución