Tesis
Identidades e polinômios centrais com involução para a álgebra de Grassmann e álgebra das matrizes triangulares de ordem 3
Fecha
2020-11-30Registro en:
Autor
Silva, Dalton Couto
Institución
Resumen
Let F be an infinite field of characteristic different from 2. In this thesis we will study the polynomial identities and central polynomials with involution for two important classes of algebras. More precisely, we describe completely the set of all polynomial identities with involution and the set of all central polynomials with involution for the Grassmann algebra E, when the involution * is arbitrary.
Afterwards, we describe the set of all polynomial identities with involution for the algebra of upper triangular matrices of order 3, UT_3(F), when F is an infinite field of characteristic p bigger or equal 3 and the involution is of the first type. Finally, given an arbitrary involution of the first type for UT_n(F), with n bigger or equal 3, we verify that its only central polynomials with involution are the trivial ones.
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Identidades graduadas em álgebras não-associativas
Silva, Diogo Diniz Pereira da Silva e -
Estructura de álgebra de Poisson de la cohomología de ciertas álgebras de Lie nilpotentes
Gutierrez, Gonzalo Emanuel Matías (2022-07-29)Si g es un álgebra de Lie, la cohomología H**(g) tiene una estructura de súper-álgebra de Poisson con producto asociativo súper-conmutativo V y un súper-corchete de Lie {-,-} que se compatibiliza con el producto \vee en ... -
Introdução elementar às álgebras Clifford 'CL IND.2' 'CL IND. 3'
Resende, Adriana Souza