dc.contributorKondo, Cezar Issao
dc.contributorhttp://lattes.cnpq.br/0900348462714778
dc.contributorhttp://lattes.cnpq.br/1714247356061726
dc.creatorPes, Ronaldo Bressan
dc.date.accessioned2020-12-23T00:07:19Z
dc.date.accessioned2022-10-10T21:33:35Z
dc.date.available2020-12-23T00:07:19Z
dc.date.available2022-10-10T21:33:35Z
dc.date.created2020-12-23T00:07:19Z
dc.date.issued2020-10-30
dc.identifierPES, Ronaldo Bressan. Boa postura para alguns sistemas de equações dispersivas e para uma equação dispersiva. 2020. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/13592.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/13592
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4043840
dc.description.abstractThe main aim of this work is to establish the well posedness for a dispersive partial differential equations systems and for a partial differential equation, with initial data belonging to Gevrey space. The proof relies on estimates in norms adapted to the linear part of the equations. In particular, estimates in Bourgain spaces are proven for the linear and nonlinear terms of the system and the main result is obtained by a contraction principle. The class of system in view contains a number of systems arising in the modeling of waves in fluids, stability and instability of solitary waves and models for wave propagation in physical systems where both nonlinear and dispersive effects are important. The techniques presented in this work were based in Grujić and Kalisch, see [21], who studied the well posedness of a IVP associated to a general equation, whose the initial data belongs to Gevrey spaces.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Matemática - PPGM
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectBoa postura
dc.subjectEspaços de Bourgain
dc.subjectEspaços de Gevrey
dc.subjectSistemas do tipo Kawahara/KdV
dc.subjectSistemas do tipo Schrödinger-KdV
dc.subjectEquação do tipo Benjamin-Ono
dc.subjectWell-posedness
dc.subjectBourgain spaces
dc.subjectGevrey spaces
dc.subjectKawahara/KdV system
dc.subjectSchrödinger-KdV system
dc.subjectBenjamin-Ono equation
dc.titleBoa postura para alguns sistemas de equações dispersivas e para uma equação dispersiva
dc.typeTesis


Este ítem pertenece a la siguiente institución