dc.contributorCerri, Ricardo
dc.contributorhttp://lattes.cnpq.br/6266519868438512
dc.contributorhttp://lattes.cnpq.br/8405817043726890
dc.creatorMiranda, Thiago Zafalon
dc.date.accessioned2020-07-22T17:05:53Z
dc.date.accessioned2022-10-10T21:32:13Z
dc.date.available2020-07-22T17:05:53Z
dc.date.available2022-10-10T21:32:13Z
dc.date.created2020-07-22T17:05:53Z
dc.date.issued2020-06-25
dc.identifierMIRANDA, Thiago Zafalon. Geração de conjuntos consistentes de regras para classificação multirrótulo com algoritmo evolutivo multiobjetivo. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/13067.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/13067
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4043363
dc.description.abstractMulti-label classification a machine learning task whose objective is to generate models capable of learning relationships between descriptive characteristics of objects and the sets of classes to which such objects belong. In certain applications, it is important for the models to be interpretable so that their users can trust it or so that its predictions can be explained. In this research, we investigated the generation of multi-label classification models based on consistent sets of rules. We proposed an evolutionary algorithm and two auxiliary algorithms that guide the rule generation process, ensuring that the rules created were consistent with each other. A set of rules is consistent if whenever multiple rules covers an object, such rules predict the same set of classes. The proposed evolutionary algorithm utilized multi-objective optimization techniques to generate collections of classification models that offer different compromises between interpretability and predictive power. Experiments were conducted with the proposed algorithms and with algorithms from the literature and, based on statistical analysis, we concluded that the generated models were, in terms of interpretability, superior to those generated by literature's algorithms and, in terms of predictive power, they were comparable to most.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectClassificação multirrótulo
dc.subjectInterpretabilidade
dc.subjectRegras consistentes
dc.subjectOtimização multiobjetivo
dc.subjectAlgoritmos evolutivos
dc.subjectMulti-label classification
dc.subjectInterpretability
dc.subjectConsistent rules
dc.subjectMulti-objective optimization
dc.subjectEvolutionary algorithms
dc.titleGeração de conjuntos consistentes de regras para classificação multirrótulo com algoritmo evolutivo multiobjetivo
dc.typeTesis


Este ítem pertenece a la siguiente institución