dc.contributorZuanetti, Daiane Aparecida
dc.contributorhttp://lattes.cnpq.br/8352484284929824
dc.contributorhttp://lattes.cnpq.br/1185342603980646
dc.creatorCotrim, Luiz Gabriel Fernandes
dc.date.accessioned2020-06-10T15:00:18Z
dc.date.accessioned2022-10-10T21:31:47Z
dc.date.available2020-06-10T15:00:18Z
dc.date.available2022-10-10T21:31:47Z
dc.date.created2020-06-10T15:00:18Z
dc.date.issued2020-04-14
dc.identifierCOTRIM, Luiz Gabriel Fernandes. Modelo de mistura de regressão: uma abordagem bayesiana. 2020. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12896.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/12896
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4043200
dc.description.abstractIn the current dissertation, we study the mixture regression models and present two Bayesian methodologies for their estimation. The first one considers the number of components is known and we propose the use of two Bayesian model selection criteria, DIC and EBIC, to identify the number of components. In the other one, we propose a reversible jump algorithm with splitmerge steps that estimates parameters and the number of components. We apply the proposed methodologies and also the EM algorithm, already available in R package, for simulated dataset and for Brazilian educational data, studying the relationship among the Basic Education Development Index and some socioeconomic and demographic data.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectModelo de mistura
dc.subjectModelo de mistura de regressão
dc.subjectInferência Bayesiana
dc.subjectMCMC
dc.subjectEBIC
dc.subjectIDEB
dc.subjectData-driven reversible jump
dc.titleModelo de mistura de regressão: uma abordagem bayesiana
dc.typeTesis


Este ítem pertenece a la siguiente institución