dc.contributorRodrigues, Josemar
dc.contributorhttp://lattes.cnpq.br/4359114733394761
dc.contributorhttp://lattes.cnpq.br/9565445098851076
dc.creatorJordan Vasquez, Jonathan Kevin
dc.date.accessioned2020-05-22T12:16:53Z
dc.date.accessioned2022-10-10T21:31:21Z
dc.date.available2020-05-22T12:16:53Z
dc.date.available2022-10-10T21:31:21Z
dc.date.created2020-05-22T12:16:53Z
dc.date.issued2020-04-17
dc.identifierJORDAN VASQUEZ, Jonathan Kevin. Decomposição da variância para o modelo de regressão destrutivo Waring de longa duração. 2020. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12758.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/12758
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4043073
dc.description.abstractThe goal of this work is to formulate a two-stage regression long-term model, whose destructive mechanism of the competitive risk factors is flexible for measuring the impact on the survival function or cure rate of three variance components induced by: randomness effects, external effects or external frailties (unknown covariates) and destruction or internal frailty (destructive mechanism). The number of the risk factors which were not eliminated is unobservable random variable, called discrete frailty, and the choice of the frailty distribution must be appropriate to detect the sources of variability responsible for the variation between patients. The discrete frailty random variable of the first-stage of the model is based on the Waring distribution, which splits the variance into these three components, and was applied with success in the accident theory, epidemiology and biology. A simulation study and an application to a HIV and melanoma data, via likelihood approach, illustrate the utility of the Waring distribution to detect internal frailty, external frailty and model's uncertainty (randomness effect), which are not observable and responsible for the heterogeneity across patients. The cure rate is personalized and the patient is a protagonist for the treatment, and that could be useful to decide on preventive immunotherapy treatment for patients to fight cancer.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectTeoria de acidentes
dc.subjectAleatorização
dc.subjectMecanismo destrutivo
dc.subjectImunoterapia
dc.subjectFragilidade interna
dc.subjectFragilidade externa
dc.subjectDistribuição Waring generalizada
dc.subjectAccident theory
dc.subjectCovariates
dc.subjectDestructive mechanism
dc.subjectImmunotherapy
dc.subjectInternal frailt
dc.subjectExternal frailt
dc.subjectGeneralized Waring distribution
dc.titleDecomposição da variância para o modelo de regressão destrutivo Waring de longa duração
dc.typeTesis


Este ítem pertenece a la siguiente institución