dc.contributorConceição, Katiane Silva
dc.contributorhttp://lattes.cnpq.br/5789619620619667
dc.contributorhttp://lattes.cnpq.br/2019010537446525
dc.creatorMascarin, Isis Fernanda
dc.date.accessioned2020-02-13T12:00:15Z
dc.date.accessioned2022-10-10T21:30:19Z
dc.date.available2020-02-13T12:00:15Z
dc.date.available2022-10-10T21:30:19Z
dc.date.created2020-02-13T12:00:15Z
dc.date.issued2020-01-24
dc.identifierMASCARIN, Isis Fernanda. Distribuições discretas zero-modificadas para modelar dados de contagem zeros faltantes. 2020. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12241.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/12241
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4042745
dc.description.abstractThe analysis of count data takes an important place in applied statistics, since many real problems are expressed in terms of counts. Frequently, count data sets have discrepancies in the frequency of the zero observation, which may be high or low, and in these cases the set is referred as zero-inflated or zero-deflated, respectively. Besides, there are situations where the zero observation does not occur in the data set, and often zero-truncated models are inadequately considered, since there is a positive probability (and not a null one) for such event, although it has not occurred. The main aim of this dissertation is to present the procedure for parameter estimation of the zero-modified distributions in situations where the frequency of zero observation in the data set is zero and the occurrence probability of this same value is positive (zero-deflated). The proposed methodology considers the estimation of missing zeros in the data set consisting only of positive observations, such that the increased data set (with the estimated zeros included) can be explained by a traditional distribution. Moments and maximum likelihood methods are considered for the estimation procedure using the estimation-maximization algorithm. Simulation and artificial data studies are used to evaluate the properties of the estimators and estimates obtained. Real data sets with different cases of zero-modification are also analyzed.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectDistribuições zero-modificadas
dc.subjectDados zero-deflacionados
dc.subjectZeros faltantes
dc.subjectEstimador de máxima verossimilhança
dc.subjectAlgoritmo EM
dc.subjectZero-modified distributions
dc.subjectZero-deflated data
dc.subjectMissing zeros
dc.subjectMaximum likelihood estimator
dc.subjectEM algorithm
dc.titleDistribuições discretas zero-modificadas para modelar dados de contagem zeros faltantes
dc.typeTesis


Este ítem pertenece a la siguiente institución