dc.contributorAndrade Filho, Marinho Gomes de
dc.contributorhttp://lattes.cnpq.br/4126245980112687
dc.contributorConceição, Katiane Silva
dc.contributorhttp://lattes.cnpq.br/5789619620619667
dc.contributorhttp://lattes.cnpq.br/8174221730418600
dc.creatorRaquel, Gabriela Cintra
dc.date.accessioned2020-01-30T12:52:19Z
dc.date.accessioned2022-10-10T21:30:09Z
dc.date.available2020-01-30T12:52:19Z
dc.date.available2022-10-10T21:30:09Z
dc.date.created2020-01-30T12:52:19Z
dc.date.issued2019-12-09
dc.identifierRAQUEL, Gabriela Cintra. Modelo poisson zero-modificado com efeito aleatório para dados longitudinais. 2019. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/12185.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/12185
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4042694
dc.description.abstractIn this work we present the Zero-Modified Poisson model with Normal random effect, and the Zero-Modified Poisson model with Generalized Log-Gamma random effect, which are extensions of the Zero-Modified Poisson model. Since the Generalized Log-Gamma effect generalizes the Normal effect, it can be used in atypical situations where the Normal effect is not the most appropriate (e.g. asymmetric data). The random effect induces correlation in the model and accommodates the intrinsic variability of each individual. Thus, these models allow us to deal with longitudinal counting data, regardless of its number of null observations (zero-inflated or zero-deflated data). We consider the classical and Bayesian approaches to estimate the parameters of the model and we developed a simulation study to evaluate the performance of the estimators. In order to illustrate the proposed procedure, we analysed a set of real data regarding the count of reports of deaths of children aged 1 to 4 years, in the cities of the State of Bahia, Brazil, during the years 2014, 2015 and 2016. The results showed that both models are effective for modeling a longitudinal data set without the preliminary knowledge about the existing inflation or zero deflation characteristic.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisherCâmpus São Carlos
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.subjectDados de contagem
dc.subjectDados longitudinais
dc.subjectDados zero-modificados
dc.subjectDados zero-inflacionados
dc.subjectDados zero-deflacionados
dc.subjectEfeito aleatório
dc.subjectLog-gama generalizado
dc.subjectCounting data
dc.subjectLongitudinal data
dc.subjectZero-modified data
dc.subjectZero-inflated data
dc.subjectZero-deflated data
dc.subjectRandom effect
dc.subjectGeneralized log-gamma
dc.titleModelo poisson zero-modificado com efeito aleatório para dados longitudinais
dc.typeTesis


Este ítem pertenece a la siguiente institución