dc.contributorEhlers, Ricardo Sandes
dc.contributorhttp://lattes.cnpq.br/4020997206928882
dc.contributorAndrade Filho, Marinho Gomes de
dc.contributorhttp://lattes.cnpq.br/4126245980112687
dc.contributorhttp://lattes.cnpq.br/4813374924157701
dc.creatorXavier, Cleber Martins
dc.date.accessioned2019-07-17T13:55:27Z
dc.date.accessioned2022-10-10T21:28:14Z
dc.date.available2019-07-17T13:55:27Z
dc.date.available2022-10-10T21:28:14Z
dc.date.created2019-07-17T13:55:27Z
dc.date.issued2019-04-26
dc.identifierXAVIER, Cleber Martins. Métodos de Monte Carlo Hamiltoniano aplicados em modelos GARCH. 2019. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11516.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/11516
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4042038
dc.description.abstractOne of the most important informations in financial market is variability of an asset. Several models have been proposed in literature with a view of to evaluate this phenomenon. Among them we have the GARCH models. This paper use Hamiltonian Monte Carlo (HMC) methods for estimation of parameters univariate and multivariate GARCH models. Simulation studies are performed and the estimatives compared with Metropolis-Hastings methods of the BayesDcc- Garch package. Also, we compared the results of HMC method with the methodology present in rstan package. Finally, a application with real data is performed using bivariate DCC-GARCH and the methods of estimation HMC and Metropolis-Hastings.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisherCâmpus São Carlos
dc.rightsAcesso aberto
dc.subjectVolatilidade
dc.subjectModelos GARCH
dc.subjectMCMC
dc.subjectMonte Carlo Hamiltoniano
dc.subjectVolatility
dc.subjectGARCH models
dc.subjectHamiltonian Monte Carlo
dc.titleMétodos de Monte Carlo Hamiltoniano aplicados em modelos GARCH
dc.typeTesis


Este ítem pertenece a la siguiente institución