dc.contributorPapa, João Paulo
dc.contributorhttp://lattes.cnpq.br/9039182932747194
dc.contributorLevada, Alexandre Luis Magalhães
dc.contributorhttp://lattes.cnpq.br/3341441596395463
dc.contributorhttp://lattes.cnpq.br/8410467431339373
dc.creatorPires, Rafael Gonçalves
dc.date.accessioned2019-06-03T19:30:16Z
dc.date.accessioned2022-10-10T21:28:07Z
dc.date.available2019-06-03T19:30:16Z
dc.date.available2022-10-10T21:28:07Z
dc.date.created2019-06-03T19:30:16Z
dc.date.issued2019-03-08
dc.identifierPIRES, Rafael Gonçalves. Restauração de imagens utilizando aprendizado de máquina. 2019. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/ufscar/11451.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/11451
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4042001
dc.description.abstractImage processing is an area that has received considerable attention as a result of the evo- lution of digital computing technology. One of the main techniques of image processing concerns its restoration, which consists in smoothing noise and detail enhancement, which are altered due to problems in the process of forming and transmitting the image. Based on the efficacy of sparse techniques and machine learning found in literature in the context of image restoration, we propose the union of these techniques as well as their evaluation in grayscale images. We also propose a study of energy-based networks such as Restricted Boltzmann Machines for noise suppression in binary images and the application of newer classifiers in this context, such as Optimum-Path Forest. Experiments using a public data- base corrupted by different degradations such as noise and/or blurring show the ineffective application of sparsity to different neural network architectures, the effectiveness of the Restricted Boltzmann Machines and the Optimum-Path Forest classifier.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisherCâmpus São Carlos
dc.rightsAcesso aberto
dc.subjectAprendizado de máquina
dc.subjectRestauração de Imagens
dc.subjectAprendizado profundo
dc.subjectMachine learning
dc.subjectImage restoration
dc.subjectDeep learning
dc.titleRestauração de imagens utilizando aprendizado de máquina
dc.typeTesis


Este ítem pertenece a la siguiente institución