dc.contributorEhlers, Ricardo Sandes
dc.contributorhttp://lattes.cnpq.br/4020997206928882
dc.contributorhttp://lattes.cnpq.br/3210760047664783
dc.creatorDanilevicz, Ian Meneghel
dc.date.accessioned2018-04-12T13:19:41Z
dc.date.accessioned2022-10-10T21:23:59Z
dc.date.available2018-04-12T13:19:41Z
dc.date.available2022-10-10T21:23:59Z
dc.date.created2018-04-12T13:19:41Z
dc.date.issued2018-02-26
dc.identifierDANILEVICZ, Ian Meneghel. Detecting influential observations in spatial models using Bregman divergence. 2018. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9734.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/9734
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4041831
dc.description.abstractHow to evaluate if a spatial model is well ajusted to a problem? How to know if it is the best model between the class of conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models, including homoscedasticity and heteroscedasticity cases? To answer these questions inside Bayesian framework, we propose new ways to apply Bregman divergence, as well as recent information criteria as widely applicable information criterion (WAIC) and leave-one-out cross-validation (LOO). The functional Bregman divergence is a generalized form of the well known Kullback-Leiber (KL) divergence. There is many special cases of it which might be used to identify influential points. All the posterior distributions displayed in this text were estimate by Hamiltonian Monte Carlo (HMC), a optimized version of Metropolis-Hasting algorithm. All ideas showed here were evaluate by both: simulation and real data.
dc.languageeng
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisherCâmpus São Carlos
dc.rightsAcesso restrito
dc.subjectInferência Bayesiana
dc.subjectDivergência de Bregman
dc.subjectMonte Carlo Hamiltoniano
dc.subjectPontos influentes
dc.subjectModelos espaciais
dc.subjectHeteroscedasticidade
dc.subjectBayesian inference
dc.subjectBregman divergence
dc.subjectHamiltonian Monte Carlo
dc.subjectInfluential points
dc.subjectSpatial models
dc.subjectHeteroscedasticity
dc.titleDetecting influential observations in spatial models using Bregman divergence
dc.typeTesis


Este ítem pertenece a la siguiente institución