dc.creatorPereira da Silva e Silva, Diogo Diniz
dc.creatorMello, Thiago Castilho de [UNIFESP]
dc.date.accessioned2020-07-31T12:47:33Z
dc.date.accessioned2022-10-07T21:02:49Z
dc.date.available2020-07-31T12:47:33Z
dc.date.available2022-10-07T21:02:49Z
dc.date.created2020-07-31T12:47:33Z
dc.date.issued2016
dc.identifierJournal Of Algebra. San Diego, v. 464, p. 246-265, 2016.
dc.identifier0021-8693
dc.identifierhttps://repositorio.unifesp.br/handle/11600/56899
dc.identifier10.1016/j.jalgebra.2016.07.005
dc.identifierWOS:000381952900008
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4026371
dc.description.abstractLet F be an infinite field and UT(d(1),..., d(n)) be the algebra of upper block-triangular matrices over F. In this paper we describe a basis for the C-graded polynomial identities of UT(d(1),..., d(n)), with an elementary grading induced by an n-tuple of elements of a group G such that the neutral component corresponds to the diagonal of UT(d(1),..., d(n)). In particular, we prove that the monomial identities of such algebra follow from the ones of degree up to 2n - 1. Our results generalize, for infinite fields of arbitrary characteristic, previous results in the literature which were obtained for fields of characteristic zero and for particular G-gradings. In the characteristic zero case we also generalize results for the algebra UT(d(1),..., d(n)) circle times C with a tensor product grading, where C is a color commutative algebra generating the variety of all color commutative algebras. (C) 2016 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationJournal Of Algebra
dc.rightsAcesso restrito
dc.subjectGraded polynomial identities
dc.subjectBlock-triangular matrix algebras
dc.subjectBasis for polynomial identities
dc.subjectElementary grading
dc.titleGraded identities of block-triangular matrices
dc.typeArtigo


Este ítem pertenece a la siguiente institución