dc.creatorBianchi, Angelo Calil [UNIFESP]
dc.creatorVeloso, Marcelo Oliveira
dc.date.accessioned2020-07-31T12:47:01Z
dc.date.accessioned2022-10-07T20:58:04Z
dc.date.available2020-07-31T12:47:01Z
dc.date.available2022-10-07T20:58:04Z
dc.date.created2020-07-31T12:47:01Z
dc.date.issued2017
dc.identifierJournal Of Algebra. San Diego, v. 469, p. 96-108, 2017.
dc.identifier0021-8693
dc.identifierhttps://repositorio.unifesp.br/handle/11600/56529
dc.identifier10.1016/j.jalgebra.2016.08.030
dc.identifierWOS:000387637100005
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4025460
dc.description.abstractWe describe the set of all locally nilpotent derivations of the quotient ring K[X,Y, Z]/(f (X)Y - phi(X, Z)) constructed from the defining equation f (X)Y = phi(X, Z) of a generalized Danielewski surface in K-3 for a specific choice of polynomials f and phi, with K an algebraically closed field of characteristic zero. As a consequence of this description we calculate the ML-invariant and the Derksen invariant of this ring. We also determine a set of generators for the group of K-automorphisms of K[X, Y, Z]/(f (X)Y- phi(Z)) also for a specific choice of polynomials f and phi. (C) 2016 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationJournal Of Algebra
dc.rightsAcesso restrito
dc.subjectAutomorphisms
dc.subjectDanielewski surface
dc.subjectLocally nilpotent derivations
dc.subjectML-invariant
dc.titleLocally nilpotent derivations and automorphism groups of certain Danielewski surfaces
dc.typeArtigo


Este ítem pertenece a la siguiente institución