Trabalho apresentado em evento
Community detection by consensus genetic-based algorithm for directed networks
Fecha
2016Registro en:
Procedia Computer Science, Amsterdam, v. 96, p. 90-99, 2016.
1877-0509
WOS000383252400010.pdf
10.1016/j.procs.2016.08.103
WOS:000383252400010
Autor
Mathias, Stefano B. B. R. P. [UNIFESP]
Rosset, Valerio [UNIFESP]
Nascimento, Maria C. V. [UNIFESP]
Institución
Resumen
Finding communities in networks is a commonly used form of network analysis. There is a myriad of community detection algorithms in the literature to perform this task. In spite of that, the number of community detection algorithms in directed networks is much lower than in undirected networks. However, evaluation measures to estimate the quality of communities in undirected networks nowadays have its adaptation to directed networks as, for example, the well-known modularity measure. This paper introduces a genetic-based consensus clustering to detect communities in directed networks with the directed modularity as the fitness function. Consensus strategies involve combining computational models to improve the quality of solutions generated by a single model. The reason behind the development of a consensus strategy relies on the fact that recent studies indicate that the modularity may fail in detecting expected clusterings. Computational experiments with artificial LFR networks show that the proposed method was very competitive in comparison to existing strategies in the literature. (C) 2016 The Authors. Published by Elsevier B.V.