dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Federal de São Paulo (UNIFESP)
dc.creatorAlencar, Airlane P.
dc.creatorSinger, Julio M.
dc.creatorRocha, Francisco Marcelo M. [UNIFESP]
dc.date.accessioned2016-01-24T14:26:52Z
dc.date.accessioned2022-10-07T20:43:02Z
dc.date.available2016-01-24T14:26:52Z
dc.date.available2022-10-07T20:43:02Z
dc.date.created2016-01-24T14:26:52Z
dc.date.issued2012-03-01
dc.identifierBiometrical Journal. Hoboken: Wiley-Blackwell, v. 54, n. 2, p. 214-229, 2012.
dc.identifier0323-3847
dc.identifierhttp://repositorio.unifesp.br/handle/11600/34654
dc.identifier10.1002/bimj.201100056
dc.identifierWOS:000303045200004
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4021740
dc.description.abstractThe choice of an appropriate family of linear models for the analysis of longitudinal data is often a matter of concern for practitioners. To attenuate such difficulties, we discuss some issues that emerge when analyzing this type of data via a practical example involving pretestposttest longitudinal data. in particular, we consider log-normal linear mixed models (LNLMM), generalized linear mixed models (GLMM), and models based on generalized estimating equations (GEE). We show how some special features of the data, like a nonconstant coefficient of variation, may be handled in the three approaches and evaluate their performance with respect to the magnitude of standard errors of interpretable and comparable parameters. We also show how different diagnostic tools may be employed to identify outliers and comment on available software. We conclude by noting that the results are similar, but that GEE-based models may be preferable when the goal is to compare the marginal expected responses.
dc.languageeng
dc.publisherWiley-Blackwell
dc.relationBiometrical Journal
dc.rightshttp://olabout.wiley.com/WileyCDA/Section/id-406071.html
dc.rightsAcesso restrito
dc.subjectEstimating equations method
dc.subjectGeneralized linear models
dc.subjectLongitudinal data
dc.subjectMixed models
dc.subjectPretest
dc.subjectposttest measures
dc.titleCompeting regression models for longitudinal data
dc.typeArtigo


Este ítem pertenece a la siguiente institución