Dissertação
Sistema de Recomendação baseado em conteúdo textual: avaliação e comparação
Fecha
2016-05-25Autor
Silva, Rafael Glauber Nascimento e
Institución
Resumen
Sistemas de Recomendação sugerem itens de interesse explorando as preferências dos usuários
ajudando-os contra o problema da sobrecarga de informações. Primeiramente estes sistemas eram
construídos, exclusivamente, através de técnicas com origem nas áreas de Recuperação de Informação
e Aprendizado de Máquina. Porém, desde o início da década de 90 a abordagem conhecida como
Filtragem Colaborativa, que não explora qualquer tipo de conteúdo disponível dos itens para realizar
sua tarefa, passou a ser a mais utilizada como solução para estes sistemas. Pesquisas como as de
Shardanand & Maes (1995); Das et al. (2007); Konstan & Riedl (2012) justificam essa preferência
por conta de deficiências preexistentes nos algoritmos de filtragem por conteúdo dos itens. Entretanto,
nestas pesquisas não são evidenciadas essas deficiências ou mesmo as diferenças e semelhanças das
recomendações geradas pelos algoritmos dessas duas abordagens levando esta discussão ao senso
comum. Neste trabalho é proposta uma metodologia para comparação de algoritmos de recomendação
que vai além da precisão das previsões. Para demonstrar essa metodologia a aplicamos na comparação das abordagens de Filtragem Baseada em Conteúdo Textual e a Filtragem Colaborativa. Nossos resultados demonstram que algoritmos dessas duas abordagens não só diferem em diversas dimensões em um teste de sistema, como também apresentam características que sugerem grande complementariedade.