dc.creatorBrandl, Rolf
dc.creatorSica, Carmela
dc.creatorTota, Maria
dc.creatorBrandl, Rolf
dc.creatorSica, Carmela
dc.creatorTota, Maria
dc.date.accessioned2022-10-07T19:19:42Z
dc.date.available2022-10-07T19:19:42Z
dc.date.issued2013
dc.identifier0026-9255
dc.identifierhttp://repositorio.ufba.br/ri/handle/ri/14817
dc.identifierv. 172, n. 2
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4013439
dc.description.abstractFor a group G , denote by ω(G) the number of conjugacy classes of normalizers of subgroups of G . Clearly, ω(G)=1 if and only if G is a Dedekind group. Hence if G is a 2-group, then G is nilpotent of class ≤2 and if G is a p -group, p>2 , then G is abelian. We prove a generalization of this. Let G be a finite p -group with ω(G)≤p+1 . If p=2 , then G is of class ≤3 ; if p>2 , then G is of class ≤2 .
dc.languageen
dc.rightsAcesso Aberto
dc.sourcehttp://dx.doi.org/10.1007/s00605-012-0473-y
dc.subjectConjugacy classes
dc.subjectNormalizers
dc.subjectFinite p-groups
dc.subjectp-Groups of maximal class
dc.titleTeX -Groups with few conjugacy classes of normalizers
dc.typeArtigo de Periódico


Este ítem pertenece a la siguiente institución