dc.creator | Brandl, Rolf | |
dc.creator | Sica, Carmela | |
dc.creator | Tota, Maria | |
dc.creator | Brandl, Rolf | |
dc.creator | Sica, Carmela | |
dc.creator | Tota, Maria | |
dc.date.accessioned | 2022-10-07T19:19:42Z | |
dc.date.available | 2022-10-07T19:19:42Z | |
dc.date.issued | 2013 | |
dc.identifier | 0026-9255 | |
dc.identifier | http://repositorio.ufba.br/ri/handle/ri/14817 | |
dc.identifier | v. 172, n. 2 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/4013439 | |
dc.description.abstract | For a group G , denote by ω(G) the number of conjugacy classes of normalizers of subgroups of G . Clearly, ω(G)=1 if and only if G is a Dedekind group. Hence if G is a 2-group, then G is nilpotent of class ≤2 and if G is a p -group, p>2 , then G is abelian. We prove a generalization of this. Let G be a finite p -group with ω(G)≤p+1 . If p=2 , then G is of class ≤3 ; if p>2 , then G is of class ≤2 . | |
dc.language | en | |
dc.rights | Acesso Aberto | |
dc.source | http://dx.doi.org/10.1007/s00605-012-0473-y | |
dc.subject | Conjugacy classes | |
dc.subject | Normalizers | |
dc.subject | Finite p-groups | |
dc.subject | p-Groups of maximal class | |
dc.title | TeX -Groups with few conjugacy classes of normalizers | |
dc.type | Artigo de Periódico | |