dc.creatorLuz, Joana Angélica Guimarães da
dc.creatorKlammler, Harald
dc.creatorHatfield, Kirk
dc.creatorMcVay, Michael
dc.creatorLuz, Joana Angélica Guimarães da
dc.creatorKlammler, Harald
dc.creatorHatfield, Kirk
dc.creatorMcVay, Michael
dc.date.accessioned2022-10-07T19:13:08Z
dc.date.available2022-10-07T19:13:08Z
dc.date.issued2011
dc.identifier1749-9518
dc.identifierhttp://repositorio.ufba.br/ri/handle/ri/18088
dc.identifierv. 21, n. 1
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4013161
dc.description.abstractWe present a series of simple approximate methods for up-scaling the cumulative distribution function of spatially correlated variables by using an effective number n e of independent variables. Methods are based on the property of distribution permanence of the gamma and inverse Gaussian distributions under averaging, bootstrap sampling and expansions about the normal and gamma distributions. A stochastic simulation study is used to validate each method, and simple parameters are defined to identify respective ranges of applicability. A practical example is presented where core sample rock strength data are up-scaled to shaft size for probabilistic (risk-based) deep foundation design. Supplemental material is available online.
dc.languageen
dc.publisherBrasil
dc.rightsAcesso Aberto
dc.sourcehttp://dx.doi.org/ 10.1080/17499518.2010.546266
dc.subjectProbability of failure
dc.subjectReliability
dc.subjectChange of support
dc.subjectGeostatistics
dc.subjectEdgeworth
dc.subjectGamma expansion
dc.subjectBootstrap
dc.subjectInverse Gaussian
dc.titleApproximate up-scaling of geo-spatial variables applied to deep foundation design
dc.typeArtigo de Periódico


Este ítem pertenece a la siguiente institución