dc.creatorFreedman, H. I.
dc.creatorPinho, Suani Tavares Rubim de
dc.creatorFreedman, H. I.
dc.creatorPinho, Suani Tavares Rubim de
dc.date.accessioned2022-10-07T18:54:46Z
dc.date.available2022-10-07T18:54:46Z
dc.date.issued2008
dc.identifier0031-5303
dc.identifierhttp://repositorio.ufba.br/ri/handle/ri/14657
dc.identifierv. 56, n. 1
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4012584
dc.description.abstractA mathematical model consisting of a system of two ordinary differential equations is formulated to represent the interrelationship between healthy and radiated cells at a given cite. Three different modes of radiation are considered: constant, decaying, and periodic radiation. For the constant case, precise criteria for persistence and extinction are obtained. In the decaying case, it is shown that the radiated cells always become extinct. Finally in the periodic case, criteria are obtained for a perturbed positive periodic solution.
dc.languageen
dc.rightsAcesso Aberto
dc.sourcehttp://dx.doi.org/10.1007/s10998-008-5025-2
dc.subjectCancer treatment modelling
dc.subjectDifferential equations
dc.subjectPeriodic
dc.subjectPersistence
dc.subjectRadiation
dc.subjectStability
dc.titlePersistence and extinction in a mathematical model of cell populations affected by radiation
dc.typeArtigo de Periódico


Este ítem pertenece a la siguiente institución