dc.creator | Barbosa, José Nelson Bastos | |
dc.creator | Barbosa, José Nelson Bastos | |
dc.date.accessioned | 2013-12-02T10:55:54Z | |
dc.date.accessioned | 2022-10-07T18:49:34Z | |
dc.date.available | 2013-12-02T10:55:54Z | |
dc.date.available | 2022-10-07T18:49:34Z | |
dc.date.created | 2013-12-02T10:55:54Z | |
dc.date.issued | 2005 | |
dc.identifier | 0017-0895 | |
dc.identifier | http://repositorio.ufba.br/ri/handle/ri/14030 | |
dc.identifier | v. 47, n. 1 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/4012410 | |
dc.description.abstract | The aim of this paper is to prove that the Ricci curvature ${\rm Ric}_M$ of a complete hypersurface $M^n$, $n\,{\ge}\,3$, of the Euclidean sphere $\mathbb{S}^{n+1}$, with two distinct principal curvatures of multiplicity 1 and $n-1$, satisfies $\sup {\rm Ric}_M\,{\ge}\,\inf\, f(H)$, for a function\, $f$ depending only on $n$ and the mean curvature $H$. Supposing in addition that $M^n$ is compact, we will show that the equality occurs if and only if $H$ is constant and $M^n$ is isometric to a Clifford torus $S^{n-1}(r) \times S^1(\sqrt{1-r^2})$. | |
dc.language | en | |
dc.publisher | Brasil | |
dc.rights | Acesso Aberto | |
dc.source | http://dx.doi.org.ez10.periodicos.capes.gov.br/10.1017/S0017089504002137 | |
dc.title | Hypersurfaces of ${\mathbb s}^{n+1}$ with two distinct principal curvatures | |
dc.type | Artigo Publicado em Periódico | |