dc.creatorBarbosa, José Nelson Bastos
dc.creatorBarbosa, José Nelson Bastos
dc.date.accessioned2013-12-02T10:55:54Z
dc.date.accessioned2022-10-07T18:49:34Z
dc.date.available2013-12-02T10:55:54Z
dc.date.available2022-10-07T18:49:34Z
dc.date.created2013-12-02T10:55:54Z
dc.date.issued2005
dc.identifier0017-0895
dc.identifierhttp://repositorio.ufba.br/ri/handle/ri/14030
dc.identifierv. 47, n. 1
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4012410
dc.description.abstractThe aim of this paper is to prove that the Ricci curvature ${\rm Ric}_M$ of a complete hypersurface $M^n$, $n\,{\ge}\,3$, of the Euclidean sphere $\mathbb{S}^{n+1}$, with two distinct principal curvatures of multiplicity 1 and $n-1$, satisfies $\sup {\rm Ric}_M\,{\ge}\,\inf\, f(H)$, for a function\, $f$ depending only on $n$ and the mean curvature $H$. Supposing in addition that $M^n$ is compact, we will show that the equality occurs if and only if $H$ is constant and $M^n$ is isometric to a Clifford torus $S^{n-1}(r) \times S^1(\sqrt{1-r^2})$.
dc.languageen
dc.publisherBrasil
dc.rightsAcesso Aberto
dc.sourcehttp://dx.doi.org.ez10.periodicos.capes.gov.br/10.1017/S0017089504002137
dc.titleHypersurfaces of ${\mathbb s}^{n+1}$ with two distinct principal curvatures
dc.typeArtigo Publicado em Periódico


Este ítem pertenece a la siguiente institución