dc.creatorCosta, Ézio de Araújo
dc.creatorCosta, Ézio de Araújo
dc.date.accessioned2022-10-07T18:46:21Z
dc.date.available2022-10-07T18:46:21Z
dc.date.issued2005
dc.identifier0003-889X
dc.identifierhttp://repositorio.ufba.br/ri/handle/ri/13623
dc.identifierv.85 n. 2
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4012241
dc.description.abstractLet M n be a complete Riemannian manifold immersed isometrically in the unity Euclidean sphere Sn+1. In [9], B. Smyth proved that if M n , n ≧ 3, has sectional curvature K and Ricci curvature Ric, with inf K > −∞, then sup Ric ≧ (n − 2) unless the universal covering M~n of M n is homeomorphic to Rn or homeomorphic to an odd-dimensional sphere. In this paper, we improve the result of Smyth. Moreover, we obtain the classification of complete hypersurfaces of Sn+1. with nonnegative sectional curvature.
dc.languageen
dc.rightsAcesso Aberto
dc.sourcehttp://dx.doi.org/ 10.1007/s00013-005-1255-8
dc.titleA Ricci inequality for hypersurfaces in the sphere
dc.typeArtigo de Periódico


Este ítem pertenece a la siguiente institución