A Ricci inequality for hypersurfaces in the sphere
dc.creator | Costa, Ézio de Araújo | |
dc.creator | Costa, Ézio de Araújo | |
dc.date.accessioned | 2022-10-07T18:46:21Z | |
dc.date.available | 2022-10-07T18:46:21Z | |
dc.date.issued | 2005 | |
dc.identifier | 0003-889X | |
dc.identifier | http://repositorio.ufba.br/ri/handle/ri/13623 | |
dc.identifier | v.85 n. 2 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/4012241 | |
dc.description.abstract | Let M n be a complete Riemannian manifold immersed isometrically in the unity Euclidean sphere Sn+1. In [9], B. Smyth proved that if M n , n ≧ 3, has sectional curvature K and Ricci curvature Ric, with inf K > −∞, then sup Ric ≧ (n − 2) unless the universal covering M~n of M n is homeomorphic to Rn or homeomorphic to an odd-dimensional sphere. In this paper, we improve the result of Smyth. Moreover, we obtain the classification of complete hypersurfaces of Sn+1. with nonnegative sectional curvature. | |
dc.language | en | |
dc.rights | Acesso Aberto | |
dc.source | http://dx.doi.org/ 10.1007/s00013-005-1255-8 | |
dc.title | A Ricci inequality for hypersurfaces in the sphere | |
dc.type | Artigo de Periódico |