dc.creatorMalbouisson, J. M. C.
dc.creatorQueiroz, H.
dc.creatorKhanna, Faqir C.
dc.creatorMalbouisson, A. P. C.
dc.creatorRocha Filho, Tarcísio M. da
dc.creatorSantana, Ademir Eugênio de
dc.creatorSilva, J. C. da
dc.creatorMalbouisson, J. M. C.
dc.creatorQueiroz, H.
dc.creatorKhanna, Faqir C.
dc.creatorMalbouisson, A. P. C.
dc.creatorRocha Filho, Tarcísio M. da
dc.creatorSantana, Ademir Eugênio de
dc.creatorSilva, J. C. da
dc.date.accessioned2022-10-07T18:45:26Z
dc.date.available2022-10-07T18:45:26Z
dc.date.issued2005
dc.identifier0370-2693
dc.identifierhttp://repositorio.ufba.br/ri/handle/ri/13605
dc.identifierv.624 n. 3-4
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4012181
dc.description.abstractWe study the N-component (2+1)-dimensional Gross–Neveu model bounded between two parallel planes separated by a distance L at finite temperature T. From the four-point function, we obtain a closed expression for the large-N effective coupling constant g=g(L,T,λ). Different behavior depending on the magnitude of the fixed coupling constant λ is found to lead to a “critical” value λc. If λ<λc, only short-distance and/or high-temperature “asymptotic freedom” (g→0) is found. For λ⩾λc, and low enough T, one also observes a divergence in g as L→Lc, suggesting that fermions become spatially confined, an effect which is destroyed by raising the temperature. We find a confining length, Lc≃1.61 fm, that is close to the proton charge diameter (≈1.74 fm) and a “deconfining” temperature, ≃138 MeV, which is comparable to the estimated value of the deconfining temperature (≈200 MeV) for hadrons.
dc.languageen
dc.rightsAcesso Aberto
dc.sourcehttp://dx.doi.org.ez10.periodicos.capes.gov.br/10.1016/j.physletb.2005.08.020
dc.subjectGross–Neveu model
dc.subjectFour-point function
dc.subjectSpatial confinement
dc.subjectThermal deconfinement
dc.titleSpatial confinement and thermal deconfinement in the 3D Gross–Neveu model
dc.typeArtigo Publicado em Periódico


Este ítem pertenece a la siguiente institución