dc.creatorCribari Neto, Francisco
dc.creatorFerrari, Silvia L. P.
dc.creatorCordeiro, Gauss Moutinho
dc.creatorCribari Neto, Francisco
dc.creatorFerrari, Silvia L. P.
dc.creatorCordeiro, Gauss Moutinho
dc.date.accessioned2022-10-07T16:04:58Z
dc.date.available2022-10-07T16:04:58Z
dc.date.issued2000
dc.identifier0006-3444
dc.identifierhttp://www.repositorio.ufba.br/ri/handle/ri/7805
dc.identifierv. 87, n. 4
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4006553
dc.description.abstractThe heteroscedasticity‐consistent covariance matrix estimator proposed by White (1980) is commonly used in practical applications and is implemented into a number of pieces of statistical software. However, although consistent, it can display substantial bias in small to moderately large samples, as shown by Monte Carlo simulations elsewhere. This paper defines modified White estimators which are approximately bias‐free. Numerical results show that the modified estimators display much smaller bias than White's estimator in small samples. We also show that the bias correction leads to some variance inflation. In hypothesis testing based on heteroscedasticity‐consistent covariance matrix estimators, numerical results suggest that tests based on the proposed bias‐corrected estimators typically display smaller size distortions.
dc.languageen
dc.sourcehttp://dx.doi.org/10.1093/biomet/87.4.907
dc.subjectBias correction
dc.subjectCovariance matrix estimation
dc.subjectHeteroscedasticity
dc.subjectLinear regressio
dc.titleImproved heteroscedasticity‐consistent covariance matrix estimators
dc.typeArtigo de Periódico


Este ítem pertenece a la siguiente institución