dc.creatorFerrari, Silvia L. P.
dc.creatorCordeiro, Gauss Moutinho
dc.creatorCribari Neto, Francisco
dc.creatorFerrari, Silvia L. P.
dc.creatorCordeiro, Gauss Moutinho
dc.creatorCribari Neto, Francisco
dc.date.accessioned2022-10-07T16:00:45Z
dc.date.available2022-10-07T16:00:45Z
dc.date.issued2001
dc.identifier0378-3758
dc.identifierhttp://www.repositorio.ufba.br/ri/handle/ri/7700
dc.identifierv. 97, n. 1
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4006456
dc.description.abstractThis paper develops second-order asymptotic theory for score tests in proper dispersion models without imposing known dispersion. Our results can be used to provide an Edgeworth expansion for the test statistic or to obtain a Bartlett-corrected statistic. The latter is a modified version of the original statistic distributed as chi-squared with an error of order View the MathML source, n being the sample size, which is an improvement over Rao's original score statistic which has a chi-squared distribution with error of order View the MathML source. We also show that the formulae we obtain generalize a number of previously published results.
dc.languageen
dc.sourcehttp://dx.doi.org/10.1016/S0378-3758(00)00352-9
dc.subjectBartlett-type correction
dc.subjectchi-squared distribution
dc.subjectEdgeworth expansion
dc.subjectProper dispersion model
dc.subjectScore test
dc.subjectvon Mises regression mode
dc.titleHigher-order asymptotic refinements for score tests in proper dispersion models
dc.typeArtigo de Periódico


Este ítem pertenece a la siguiente institución