dc.creatorSouza, Maria Luiza Lapa de
dc.creatorSouza, Maria Luiza Lapa de
dc.date.accessioned2022-10-07T15:58:08Z
dc.date.available2022-10-07T15:58:08Z
dc.date.issued2002-03
dc.identifier0920-3036
dc.identifierhttp://www.repositorio.ufba.br/ri/handle/ri/7552
dc.identifierv. 25, n. 3
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/4006333
dc.description.abstractWe construct two cohomological invariants associated to pairs of Lagrangian sub-bundles of a symplectic bundle on a compact manifold upon which a compact Lie group is acting. The first invariant, which we call the classical equivariant Maslov H-invariant, provides an obstruction to Lagrangian transversality and lives in the Borel cohomology. The second invariant, which we call the equivariant Maslov U-invariant, generalises the author's results in K-Theory 13 (1998), 347–361 to the equivariant context and provides a necessary and sufficient condition for equivariant Lagrangian transversality, up to homotopic stability, and lives in the U-theory (intermediate between the real complex K-theories). As an application, we show that two Lagrangian sub-bundles of a symplectic bundle on a homogeneous space are always stably transverse.
dc.languageen
dc.sourcehttp://dx.doi.org/10.1023/A:1015646122238
dc.subjectequivariant K-theory
dc.subjectMaslov invariants
dc.subjectcharacteristic classes
dc.subjectLagrangian bundles
dc.titleInvariants de Maslov équivariants
dc.typeArtigo de Periódico


Este ítem pertenece a la siguiente institución