dc.creator | Souza, Maria Luiza Lapa de | |
dc.creator | Souza, Maria Luiza Lapa de | |
dc.date.accessioned | 2022-10-07T15:58:08Z | |
dc.date.available | 2022-10-07T15:58:08Z | |
dc.date.issued | 2002-03 | |
dc.identifier | 0920-3036 | |
dc.identifier | http://www.repositorio.ufba.br/ri/handle/ri/7552 | |
dc.identifier | v. 25, n. 3 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/4006333 | |
dc.description.abstract | We construct two cohomological invariants associated to pairs of Lagrangian sub-bundles of a symplectic bundle on a compact manifold upon which a compact Lie group is acting. The first invariant, which we call the classical equivariant Maslov H-invariant, provides an obstruction to Lagrangian transversality and lives in the Borel cohomology. The second invariant, which we call the equivariant Maslov U-invariant, generalises the author's results in K-Theory 13 (1998), 347–361 to the equivariant context and provides a necessary and sufficient condition for equivariant Lagrangian transversality, up to homotopic stability, and lives in the U-theory (intermediate between the real complex K-theories). As an application, we show that two Lagrangian sub-bundles of a symplectic bundle on a homogeneous space are always stably transverse. | |
dc.language | en | |
dc.source | http://dx.doi.org/10.1023/A:1015646122238 | |
dc.subject | equivariant K-theory | |
dc.subject | Maslov invariants | |
dc.subject | characteristic classes | |
dc.subject | Lagrangian bundles | |
dc.title | Invariants de Maslov équivariants | |
dc.type | Artigo de Periódico | |